Benford's Law and irrational rotation How frequently do powers of 2 start with digit 7? A: Bulard's distribution (holds for a bo all a = 10k First publication in 1880 by Simon Newcomb Benford's distribution: 1937 law of anomalous digit 1 2 3 4 5 6 7 8 hungers " $9.7 \quad 7.9 \quad 6.7 \quad 5.8 \quad 5.1$ 30.1 $17.6 \quad 12.5$ frequency 0301 0.176 0,125... PI=PstRtPatPatPa P 2= P4+P5 P3= P6+P7 leading dy of 29 Begins w d

 $Pd = log_{10} \left(1 + \frac{1}{d}\right) \quad \text{So} = log_{10} \frac{dx_1}{d} = log_{10} \left(1 + \frac{1}{d}\right) \quad \text{So} = log_{10} \frac{dx_1}{d} = log_{10} \left(1 + \frac{1}{d}\right) = log_{10}$

Most about combinations of disits? San, com 2° Began with 2021? Yes, just switch to Ges 6=10° for 2021 as B=108 for 12.7 and So probabilités are les jour 7071 But, why stop here? Fib. numbers Lucas Foctorials n! Binomials (κ) also Satisfy Soutod's distribution

	N	d	1	2	3	4	5	6	7	8	9
	10		3	2	1	1	1	1	0	1	0
	20		6	4	2	2	2	2	0	2	0
	30		9	6	3	3	3	3	0	3	0
_	40		12	8	4	4	4	4	0	4	0
											_
	50		15	10	5	5	5	4	$\overline{1}$	5	\bigcirc
	60		18	12	6	6	6	4	2	5	(1)
(
(100		30	17	13	10	7	7	6	5	5

 $2^{46} = 70368744177664$ $2^{53} = 9007199254740992$ • So from the first 109, 1000, 10000, 10⁵, and 10⁶ we expect:

\Box	.oons	(Der	FROM U						
(0		2	3	4	5	6	7	8	9
(00)	30	18	12	10	8	7	6	5	5
(000	301	176	125	97	79	67	58	51	46
(0)	3010	1761	1249	969	792	669	580	512	458
10 ⁵	30103	17609	12494	9691	7918	6695	5799	5115	4576
106	301030	176091	124939	96910	79181	66947	57992	51153	45757

Real statistics (for d=2):

	1	2	3	4	5	6	7	8	9	
100	30	17	13	10	7	7	6	5	5	
	301	176	125	97	79	69	56	52	45	
	3010	1761	1249	970	791	670	579	512	458	
106	301030	176093	124937	96911	79182	66947	57990	51154	45756	

for N=106

	EN	· Theor
	Actual	Benford
1	301030	301030
2	176093	176091
3	124937	124939
4	96911	96910
5	79182	79181
6	66947	66948
7	57990	57992
8	51154	51153
9	45756	45757

Rational approximations

or est If I is an irradional number, how vell can it be epproximated by rationals?
Soy, if we want the denominator

9 of the rational number be
at most N? N 3/N 3/N 50 We can quantee /N
the error (poeision) of &1 E.f. for $X=10^{-16}$ = 3.2 = 3.14ne gat 0.06 $= \frac{16}{5}$ but sometimes we get bucky and the precision is much better than expa fed e.s. 7 = 0.00126 and = 1 = 1 = 0.0719 less

In fact, we can get much better! Thus For every N (whole number) there is $9 \leq N$ and P (whole) (Dinicht Appropriation Thun) Corollary If I is irrefiord, then there are infin many values of 9 5. Flor Pf of The Muld. Gen 9: i. the fractional part of day is the = {491 = 49 - [49] of length of Now toke 0, 2dt, 12dt, ..., 1 Note in [0,1)

50 two of Jack and Sbox 9 will land in the same 12 darual (ly pigeonhole principle) (ala Dirichlet's Drawer principle)
(Box) and so ()ax { - 16x } \ < 1 (ax-lad) - (Ba-LEd) (ath and est N SO (0-6/5N Pt of the cordlay: Take N=2 (e.s.)
Fird 9 \(\int N \) \(\sigma \) \(\lambda \) \(\lambd So $\leq \frac{1}{9}$ Let $\mathcal{E} = |x - \frac{1}{9}|^2$, and take $|x - \frac{1}{9}|^2$, then $|x - \frac{1}{9}|^2$, $|x - \frac{1}{9}|^2$, $|x - \frac{1}{9}|^2$, $|x - \frac{1}{9}|^2$

9.1. | \d- \frac{P^2}{92} | \lefta \frac{1}{92} \lefta \frac{1}{92 i and so on, take Ez= 1/2/20 and Nz > = exc, This sives as many takonal approx. do & St | d-f| < f2 | "good approx" Applications (1) An irradionality test If $d = \frac{m}{n}$ is rational, and $\frac{d}{d} \neq \frac{m}{n}$ then $|x-f| = |m-f| = |mq-np|^{\geq 1}$ So we count have & many "sped" appositations to & Therefore, I & bas a many good approximations, then & is irrotant.

se es irrational

2 "Aprilication 2

If at every point on the integer lating we plant an askitteny thin tree lors Live radius Exo elantedius E 20 The any strought like through the eoig'n will interset 0 - many trees Nov take N> = i.e. 1/25 and by D. This we have Pig 195N $|x-\frac{1}{q}| \leq \frac{1}{qN} = \frac{1}{N} \cdot \frac{1}{q} < \frac{\epsilon}{q}$ or 192-p1<2 , se we'll hit the fee at pt (9,8)