Benford's Law and inpational rotation
subtitle
' How frequently do powers of 2 start with digit 7 ?
A: Berford's dirtitiation (holds for a^{n} for all $a \neq 10^{k}$

First publication in 1880 by Simon Newcomb Benford's distribution: $1937^{\text {" Law of anomalous, }}$ | digit | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | hanger s' $^{\prime}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| frequency | 30.1 | 17.6 | 12.5 | 9.7 | 7.9 | 6.7 | 5.8 | 5.1 | 4.6 | $\begin{array}{rl}0.301 & 0.1760 .12 \\ & =\log _{10} 2 \\ \text { idea. }\end{array}$

$$
\begin{aligned}
& p_{1}=p_{5}+p_{6}+p_{7}+p_{8}+p_{9} \\
& \rho_{2}=p_{4}+p_{5} \\
& p_{3}=p_{6}+p_{7}
\end{aligned}
$$

leading dis of 2^{a} begins wd

$$
\begin{aligned}
& p_{d}=\log _{10}\left(1+\frac{1}{d}\right)_{10},{ }_{50}=\log _{10} \frac{d+1}{d} \\
& p_{1}=\log _{10}(1+1)=\log _{10} 2 \\
& p_{2}=\log _{10}\left(1+\frac{1}{2}\right)=
\end{aligned}
$$

Why is this do?

What about combinations of disits?
San, can 2^{n} began with 2021 ? or with 1234567?

Yes, just switch to Case
$b=10^{4}$ for 2021
or $b=10^{8}$ for $12 \cdots 7$ and
so probabilities are $\log _{10^{4}} \frac{2022}{2021}$ and...

But, why stop here?
First digits
Fib. numbers, Lucas AS Factorials ' n !
Binomials $\quad\binom{n}{k}$
also Satisfy Benford's distrilation

N	d	1	2	3	4	5	6	7	8
9									
10		3	2	1	1	1	1	0	1
0									
20		6	4	2	2	2	2	0	2
0	0								
30		9	6	3	3	3	3	0	3
40		12	8	4	4	4	4	0	4
	0								

| 50 | 15 | 10 | 5 | 5 | 5 | 4 | 1 | 5 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 60 | 18 | 12 | 6 | 6 | 6 | 4 | 2 | 5 | 1 |

$\begin{array}{llllllllll}100 & 30 & 17 & 13 & 10 & 7 & 7 & 6 & 5 & 5\end{array}$
$2^{46}=70368744177664$
$2^{53}=9007199254740992$

	1	2	3	4	5	6	7	8	9
	30	17	13	10	7	7	6	5	5
	301	176	125	97	79	69	56	52	45
10^{6}	3010	1761	1249	970	791	670	579	512	458
	301030	176093	124937	96911	79182	66947	57990	51154	45756

Exp. Theron
for $N=10^{6}$

	Exp. Actual	Theron Benford
1	301030	301030
2	176093	176091
3	124937	124939
4	96911	96910
5	79182	79181
6	66947	66948
7	57990	57992
8	51154	51153
9	45756	45757

Rational approximations

If α is an irrational number, haw well can it be approximated by rations?
Son, if we want the denominator 9 of the rational number be at most N ?

$$
\pi=\frac{p}{q} \quad, 9 \leq 10
$$

So we cor suaratee $1 / d$ the error (precision) of $<\frac{1}{2 N}$
Big for $\begin{aligned} \alpha=\pi \\ 3.14\end{aligned} \quad \frac{16}{5}=3.2$
we get 0,06 $\leq \frac{1}{10}$
bat sometimes we get lucky and the precision is much better than expected

$$
\operatorname{ted}-\frac{22}{7} \pi=0.00126
$$

and $\frac{1}{2.7}=\frac{1}{14}=0.0714{ }_{\text {less }}^{56}$ times

Ir fact, we car get muck butter!
Thus) For even N (whee number) there is $q \leqslant N$ and p (whole) st.

$$
\left|\alpha-\frac{P}{9}\right|<\frac{1}{9 N}
$$

(5 Dirichlet Approximation $9{ }^{9}$ Thu)
Corollary If α is irrational, then there are infin many values of 9
s.that $\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}}$

Pf of Than

$$
\text { mold. Foes } 9 \text { : }
$$

$$
|\alpha q-p|<\frac{1}{N}
$$

ie. He fractional part of αq is $<\lambda$

$$
=\{\alpha q\}=\alpha q-\lfloor\alpha q \mid
$$

 Thar intervals of lessee to
Now toke $\frac{0,\{\alpha\},\{2 \alpha\}, \ldots,\{N \alpha\}}{N+1 \text { numbers }}$ in $[0,1)$

So two of $\{a \alpha\}$ and $\{b a\}$ will land in the same interval (by piscoshole principle)
(aka Dirichlet's Drawer principle)
(Box)
and so $\left\{\{a \alpha\}-\left\{B_{\alpha}\right\} \left\lvert\,<\frac{1}{N}\right.\right.$

$$
\begin{aligned}
&\left|\left(a \downarrow-\left\lfloor a_{\alpha}\right\rfloor\right)-\left(b_{\alpha}-\left\lfloor b_{\alpha}\right\rfloor\right)\right| \\
&=\left\lvert\,(\left.\underbrace{\prime-6)}_{q} \alpha-\frac{\left.\left\lfloor a_{\alpha}\right\rfloor\right\rfloor}{}+\left\lfloor a_{\alpha}\right\rfloor \right\rvert\,<\frac{1}{N}\right.
\end{aligned}
$$

$a \neq 6$
and $a, b \leq N$
so $|a-b| \leq N$
Pf of the corollary:

$$
\begin{array}{ll}
\text { Tale } N=2 & \text { (e.s.) } \\
\text { Find } q \leq N & \text { sill } \\
\left(l_{\text {a }} \text { Thu }\right) & \left|\alpha-\frac{p}{q}\right|<\frac{1}{4 N} \\
& \text { so } \leq \frac{1}{q^{2}}
\end{array}
$$

Let $\varepsilon=\left|\alpha-\frac{f}{a}\right|^{>0}$, and take
$\frac{1}{N_{2}}<\frac{N_{2}}{5}>\frac{1}{5}$, then find q_{2}, p_{2}
sd. $\left|\alpha-\frac{p_{2}}{a_{2}}\right| \leqslant \frac{1}{q_{2} N_{2}}<\varepsilon$, this $q_{2} \neq q$
i and so on, take $\varepsilon_{2}=\left\lvert\, \alpha-\frac{p_{2}}{q_{2}} 1>0\right.$
and $N_{3}>\frac{1}{\varepsilon_{2}}$ etc, This
sues many rational approx.
do α st $\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}}$ "ged." $\begin{gathered}\text { approx." }\end{gathered}$
Applications (1.) An irrationality test
If $\alpha=\frac{m}{\sqrt{n}}$ is rational, and $\frac{p}{a} \neq \frac{m}{n}$
then $\left|\alpha-\frac{f}{q}\right|=\left|\frac{m}{n}-\frac{f}{a}\right|=\left|\frac{m q-n p}{n q}\right| \geqslant 1 \geqslant \frac{1}{n g}$
So we cannot have ∞ mary "good" approximations to α

Therefore, of α has ∞-many good approximations, then α is irrational!

Ex $e=1 \pi \left\lvert\,+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots+\frac{1}{2!}+\ldots\right.$
sines ∞-moony food rational apr
so $e^{\text {is is irrational }}$
(2) "Application" 2

If at very point on the integer lattice we plant an arleitary thin tree

Then any straight line though the origin will intersect ∞-many trees

Nov take $N>\frac{1}{\varepsilon}$ i.e. $\frac{1}{N}<\Sigma$
and bes Φ. Thu we Lave $P, q, q \leq N$

$$
\left|\alpha-\frac{P}{q}\right| \leq \frac{1}{a N}=\frac{1}{N} \cdot \frac{1}{q}<\frac{\varepsilon}{q}
$$

or $|q \alpha-p|<\varepsilon$, is weill hit the toe at pt $(9, p)$

