211021 - Chris Overton (handout after day 1 of 2)

Suggested preparation for next week:

- -- Review this handout, and bring any questions about it to class!
- -- View the video (first reference at the end of this handout.)

A map is "conformal" if it preserves **angles** and **orientation**. For that to even make sense, it must be "smooth": continuous and differentiable. We focus on complex-differentiable ("**analytic**") maps $f : \mathbb{C} \to \mathbb{C}$, which are conformal (with one important exception!)

Plan for today:

- Quick intro to real differentiation
- Quick intro to complex numbers
- Why a complex derivative is so much more powerful than a real one
- $f(z) = z^2$ in greater depth
 - Is this conformal as a complex function?
- Stop discrimination: ∞ is a number too (well, sort of)
- Stereographic projection: a useful way to understand a complex map
- One very useful family of conformal maps: linear fractional "Möbius" transformations (as much as we have time for today)
- The Riemann mapping theorem, and how conformal maps can be useful

Next week:

-- More maps, more applications!

Quick intro/recap: real differentiation

If you look at a well-behaved curve under a magnifying glass, it looks more like a straight line.

The derivative of a straight line is just its slope (rise over run.) So the derivative of a function is just this slope "in the limiting case": $f'(x) = \frac{df}{dx} = lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x} = lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Here, a finite change of x: $\Delta x = (x + h) - x$ ("the run") is written as h. This results in a finite change of f: $\Delta f = f(x + h) - f(x)$, which is like a rise. Then as Δx (=h) gets really small, $\frac{\Delta f}{\Delta x} \rightarrow \frac{df}{dx}$

The next examples show basic rules of differentiation:

- Many rules can be illustrated for polynomials: $y(x) = x^3 + a * x^2 + b * x + c => y'(x) = \frac{dy}{dx} = 3x^2 + 2a * x + b$ Rules: derivative distributes over addition and constant multiples; it brings a power down by one, but have to multiply by the prior power: **Power rule**: $\frac{d}{dx}x^n = n * x^{n-1}$, true even for negative n.
- Product rule: $\frac{d}{dx}(a(x) * b(x)) = a'(x) * b(x) + a(x)b'(x)$
- Chain rule: let w(y) be a function of y (such as the y(x) used above.) Then as a function of x: $w(y(x)) = sin(y(x)) => \frac{dw}{dx} = \frac{dw}{dy}\frac{dy}{dx} = cos(y) * (3x^2 + 2a * x + b)$

To express the latter as a function of x, you still have to expand the y in cos(y). You have to know a few special derivatives like sin' = cos.

- Quotient rule: $\frac{d}{dx} \frac{a(x)}{b(x)} = \frac{a'b-ab'}{b^2}$ Prove this from the product, power, and chain rules. Hint: $\frac{1}{b(x)} = b(x)^{-1}$
- What if we have a function of multiple variables? Then use **partial derivatives**, where you act as though other variables are constant: $z(x, y) = x^3 * y + 3 * x * y^4 => \frac{\partial z}{\partial x} = 3x^2 * y + 3 * y^4$

• Less important for today: the "fundamental theorem" of calculus:

 $\int_{a}^{b} f'(x)dx = f(b) - f(a)$ (This can also be stated as $\int_{a}^{b} \frac{df}{dx}dx$, which tempts you to cancel out dx in the fraction. You can't quite do that because this notation means infinitesimals, but the intuition is useful.)

Quick intro/recap: complex numbers

The complex numbers $\mathbb C$ are the (two dimensional) field extension of $\mathbb R$ formed by adding $i=\sqrt{(-1)}$

Two ways to think of a complex number z: **rectangular** and **polar**: $z = Re(z) + i * Im(z) = x + iy = r * e^{i\phi} = r * (cos(\phi) + i * sin(\phi))$ Here r is the length |z| of a complex number, and ϕ is the angle it makes with the positive real axis, and x and y are the real and imaginary parts of z.

- Addition is easy: 2-d vector addition
- Multiplication is new: multiply lengths, but add angles
 - Needham (see reference) calls multiplication an "ampli-twist", because it scales by a factor ("ampli" for amplification), and it rotates ("twist".)

Why a complex derivative is so much more powerful than a real one

A function f(z) = u(z) + iv(z) has real and imaginary parts, and each of these is a function of the real and imaginary parts of z = x + iy: f(x + iy) = u(x + iy) + iv(x + iy) = u(x, y) + iv(x, y)

Notice the two ways we can think of u and v:

- as functions of the single complax variable z = x + iy
- as functions of two real variables x and y.

In a complex derivative, h can approach 0 from any direction, and this still has to give you the same answer:

$$egin{aligned} f'(z) &= rac{df}{dz} = lim_{h o 0} rac{f(z+h)-f(z)}{h} \ &= lim_{ riangle x o 0} rac{f(z+ riangle x)-f(z)}{ riangle x} = rac{\partial u}{\partial x} + irac{\partial v}{\partial x} \ &= lim_{i riangle y o 0} rac{f(z+i riangle y)-f(z)}{i riangle y} = rac{1}{i} ig(rac{\partial u}{\partial y} + irac{\partial v}{\partial y}ig) = (-i)rac{\partial u}{\partial y} + rac{\partial v}{\partial y} \end{aligned}$$

(Note the **partial derivatives** in the last two equations.)

Let's work out some of the consequences:

• Cauchy Riemann equations:

$$\frac{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}} = \frac{\frac{\partial v}{\partial y}}{\frac{\partial u}{\partial y}} = -\frac{\frac{\partial v}{\partial x}}{\frac{\partial v}{\partial x}}$$

• Re(f) and Im(f) are each **harmonic**, e. g. $u_{xx} + u_{yy} = 0$

--> prove this!

(Notation: u_x means $\frac{\partial u}{\partial x}$. So two subscripts means you take two partial derivatives.)

[Harmonic is a special 2-d case of *Laplace's equation*: $\nabla^2 F = 0$, which is important in many areas of physics]

Question: The "conjugation" function is $ar{z} = x - iy$

- -- Is this differentiable?
- -- Is this analytic?

 $f(z)=z^2$ in greater depth

Problem: work out z^2 for z = a + ib

Problem: work out z^2 for $z = re^{i\theta}$

Question: Is this conformal as a complex function?

Answer: yes, for every point except for z=0 (and $z = \infty$, if you treat this like a point - which you'll see soon!) Around these points, the map *doubles* angles, and so is not conformal. These are points where the derivative is 0 or undefined.

Problem: what are the sets in \mathbb{C} does z^2 map to to constant u? to constant v?

Question: What are the images of horizontal and vertical lines?

Stop discrimination: ∞ is a number too (well, sort of)

We say $\lim_{x\to 0^+} \frac{1}{x} = \infty$, but $\lim_{x\to 0^-} \frac{1}{x} = -\infty$ How could this get easier in \mathbb{C} , when there are now infinitely many directions from which to approach 0?

Answer: we will see this better geometrically with stereographic projection, where the two limits above are thought to approach the same point ∞ from different directions.

Stereographic projection: useful to understand many complex maps

Stereographic projection is a map SGP from the complex plane \mathbb{C} to the unit 2-sphere \mathbb{S}^2 in three dimensions, where we can think of \mathbb{C} going through the equator of \mathbb{S}^2 , which is just a unit circle ("C"), forming the boundary of the unit disk ("D".)

Map any point z from \mathbb{C} into that point of Z=SGP(z) of \mathbb{S}^2 that is on the line from z to N, the "north pole" (0,0,1).

- The area outside the unit circle gets mapped to the upper hemisphere
- The area inside the unit circle gets mapped to the lower hemisphere
- 0
 ightarrow south pole ("S"), $\infty
 ightarrow$ north pole N
- The map SGP is 1-1 from $\mathbb{C} \cup \{\infty\}$ onto \mathbb{S}^2

With just a bit more reasoning, we can find nice geometric properties of SGP.

Question What sets get mapped onto:

- 1. Latitude circles
- 2. Longitude circles
- 3. Other circles?

Answers:

- 1. By symmetry, the pre-images of latitude circles are circles centered at the origin in \mathbb{C} . Notice that these circles fill \mathbb{C} except for 0. This is another way to see the 1-1 correspondence between \mathbb{C} without 0 and \mathbb{S}^2 without both poles.
- 2. **Prove**: longitude circles are the images of lines through the origin.
- 3. Trick question: "other circles" may be images either of lines (not through the origin) or of circles in \mathbb{C} not centered at 0.

Result: Circles on the sphere correspond to circles and lines in \mathbb{C} , depending on whether the circle goes through the north pole. Let's establish this more rigorously.

Lemma: SGP maps lines to circles **Prove**, using the following diagram:

Use this same diagram to prove:

Lemma: the tangent at N to the image circle is parallel to the line

These facts allow us to establish a perhaps surprising result:

Theorem: SGP is conformal

Prove this using yet another cool diagram from Needham:

[**Theorem** (not proved fully here, but easy using facts about inversions): SGP can be thought of as the inversion (in \mathbb{R}^3) by the circle K centered at N with radius $\sqrt{2}$. That means it also sends circles to circles.]

This is illustrated here, restricted to a plane through +1 (of $\mathbb C$), N, and S

So we see that SGP shows much of the geometry of complex maps:

Example 1: The reciprocal function z -> 1/z is a) geometric inversion followed by b) conjugation:

How do these operations look in stereographic image? Conjugation is easy: it just reflects the sphere in the vertical plane going through the poles and the point 1 (the plane parallel to the image page.)

Inversion is trickier (not fully covered here), but the surprising result is another symmetry between reciprocals:

Corollary: The stereographic image of inversion is reflection in the equatorial plane (\mathbb{C})

Corollary: The stereographic image of the reciprocal map is reflection on horizontal plane followed by reflection on this vertical plane, which amounts to rotation by the angle π around the real axis

Example 2: We have seen how the squaring function $z \to z^2$ looks on the complex plane. But how does it look on the sphere?

Answer: 1) All angles are doubled, as seen "from above", relative to the positive x direction. 2) Points not on the equator are moved toward the nearest pole (N or S)

One very useful family of conformal maps: linear fractional "Möbius" transformations (as much as we have time for today)

 $M(z) = rac{az+b}{cz+d}$

Examples:

- $z \rightarrow az$ (for constant a, Then b=0, c=0, and d=1)
- $z \rightarrow z + b$ (a=0, c=0, and d=1)
- $z \rightarrow 1/z$ (which we have considered: a=0, b=1, c=1, and d=0)
- z
 ightarrow constant (a "boring" case, whenever ad bc = 0) In this case, what is the constant?

<Draw on whiteboard how these act on \mathbb{C} >

Which of these maps are shown by the following "types" of Möbius transformations?

An important result:

Theorem: Every non-constant M(z) is 1-1 and onto, considered as a map between spheres. It is analytic in each direction.

Proof: work out inverse, verifying this works exactly when ad-bc
eq 0

Another proof: verify the steps shown below are invertable in this case.

Every Möbius transformation decomposes into the following simpler steps:

Theorem: Given three distinct points q, r, s in \mathbb{C} and three distinct points $\hat{q}, \hat{r}, \hat{s}$ in \mathbb{C} , there is a unique Möbius transformation that sends $q \to \hat{q}, r \to \hat{r}, s \to \hat{s}$

We'll prove this using:

Lemma: Given three distinct points p, q, r in \mathbb{C} , there is a unique Möbius transformation that sends $q o 0, r o 1, s o \infty$

Prove this! (Hint: try building a formula, starting with numerator and denominator, then adjust.)

The **cross ratio** is defined as $[z, q, r, s] = \frac{(z-q)(r-s)}{(z-s)(r-q)}$

You can see that this has the desired effect on q, r, s. You can arrive at this by first noticing the (z-q) and (z-s) factors are needed respectively to have the right image of q and s. Then the two factors with r create a constant multiple so that the image of r is 1.

We look again a the analogy between these maps and 2 by 2 matrices (with complex coefficients):

$$[M] = egin{bmatrix} a & b \ c & d \end{bmatrix} o \widetilde{M}(z) = rac{az+b}{cz+d} o M(z)$$

The left map above is in fact a group homomorphism, respecting multiplications:

- Matrix multiplication (on the left)
- Composition of maps $\widetilde{M(z)}$ (in the middle)

Nonsingular matrices (i.e. with determinant $ad - bc \neq 0$) form a group, as do nonconstant M(z) (satisfying the same condition.) But note that there are different ways to specify the "same" M(z) (e.g. $\frac{az+b}{cz+d} = \frac{2(az+b)}{2(cz+d)}$) This is what is meant by $\widetilde{M(z)}$: one way to specify a given complex map M(z). To get to the latter, you have to "divide out" by the set of nonzero ad-bc. One convention is to choose the M(z) for which ad-bc = 1. In this case, we get an **isomorphism** between matrices with determinant 1 and M(z).

There is a lot more we can do with these maps: fixed points, preserved regions, and much more of their geometry! We'll continue with that next week.

The Riemann Mapping Theorem:

Theorem: For any simply connected (non-empty) open subset U of the complex plane, there is an 1-1 analytic map between U and the unit disk D (inside of the unit circle.)

This means we can solve problems (like many differential equations) for such a region U by translating it into D and just solving there!

One important ingredient for this to work is that complex maps preserve functions being harmonic. As a result, turning physics & engineering problems into 2-d makes this a very useful tool

More examples on this next week. For now, you could consider "how many" Möbius maps send one side of a given circle/line to a similar region.

Example: "how many" Möbius maps send the unit disk to itself?

Conclusion

Conspiracy theory: Nature is really complex, but tries to keep us ignorant by making it seem like we live in a universe with real dimensions.

And yet, the math becomes so much cleaner when we use complex functions!

References

Homework for next time: watch this - hopefully understandable after today: https://www.youtube.com/watch?v=48aerHs9wL0

A good, brief survey of complex analysis appears in the Princeton Companion to Applied Mathematics (2016) (Their Companion to [pure] Mathematics (2008) doesn't even list this as an article, but contains several references.)

Ancient and more recent books:

-- Knopp, Elements of the Theory of Functions (multiple volumes originally published starting 1926 - cheap old Dover translations available at garage sales)

-- Needham, Visual Complex Analysis, 1997

