
BMC - Advanced: "Groupdocu" - puzzles with groups  

210126 - Chris Overton (handout after lecture 1 on 210120)  

This handout summarizes topics we covered last week, as well as recommended reading & 
problems to prepare for tomorrow's second lecture.

Spoiler alerts: After several questions (often marked Problem), there are answers, 
prefixed by --> . Suggestion: try to think about the problem before looking at the answer. 

Caution: this is neither a complete set of notes, nor is it meant as a sole source to 
introduce these topics - for that, it's best if you also participate in class!

Recently, I covered groups as background material for recent math circles in 
algebraic topology. Two influences:
1) This reminded me how cool groups are on their own
2) As I was working out a group multiplication table, a comment by Ted Alper (Stanford 
pre-collegiate studies): "this is like Sudoku"**(to be explained shortly...)

Hence, we're presenting this as a series of puzzles!

Getting to know groups (Topics for the first day):  

groups: definitions & properties
understand what we take for granted (commutativity, associativity) and 
changing habits when we can't
we throw lots of definitions and tricks at you, and illustrate how they fit 
together!
useful concepts: conjugacy, actions, subgroups, normal subgroups, centers, ..
useful machinery for contructing groups and working with them: presentations, 
permutations, sylow theorems
experience working out lots of examples



Plan for second day: additional experience with several special
examples, more thoerems

 

more on conjugacy and commutators: measuring how much groups and 
elements fail to be abelian
every finite group can be thought of as a permutation group. How can we use 
this?
every finite group can be described using generators and relations
"multiplying" and "dividing" by groups - how "normal" subgroups are special => 
that means a way to understand all groups is to see how they can be extended 
from "simple" groups (those without nontrivial normal subgroups.)
the structure of finite abelian groups
working out more examples, especially p-groups 
hopefully build confidence in you as an aspiring group theorist (as opposed to 
group therapist)

Definition: a group  is a set of elements  and an operation 
 (here called "multiplication/times") so that:

 

The operation is defined: 
Associative:  = 
There is a neutral element (often written as 1) such 
For any  there is an inverse element  such that 

Caution! We did not say the operation is commutative (= "abelian"), which would mean 
always  (  "commutes" with .) You have to change your habit of 
assuming this, and realize how to work differently with non-abelian groups!

Remember, some elements can commute even in non-abelian groups. 

If a group is abelian, the operation is sometimes written as "+", the neutral element as "0", 
and inverses as "-g".



Let's work out our first examples (try to answer each question before
peeking at the answer!)

 

Are there any groups with no elements?

--> No, this has no "neutral" element.

Are there any groups with one element?

--> Yes, the "trivial" group than has only the element 1.

How many groups are there with two elements (i.e. of "order" two)?

--> There's exactly one such group. Give the name "a" to the element other than 1. Then 
there is no other element that could be the inverse of a, which works out the entire 
multiplication table. So even though we could name the group and its elements 
differently, we say there is only 1 group of order 2 (up to isomorphism.) 

Definition: the order of a group  (written ) is its number of elements; the order of an 
element , written , is the lowest  for which , namely how many times you 
have to multiply it by itself to get to the neutral element (could be )

Introducing multiplication tables ("Cayley tables")  

A group can be specified by its multiplication table. Here is one for a group of order 4 
called the "Klein group":



The row and column headers (respectively in column zero and row zero) tell you what you 
are multiplying. For example, the item in position (2, 3) is in the row for a and the column 
for b, and tells you that , meaning you get the element called "ab". 

A multiplication table need not form a group. You also need a neutral element (here in 
row 1 and column 1), each element has to have an inverse (so the neutral element has to 
appear as a result in each row and each column), and the operation has to be associative 
(more on that later!)

By convention, we will always put the neutral element in the first row and in the first 
column. In this case, the row headers are equal to elements in the first row of answers, 
e.g. because . Similarly for columns. So we can make our tables smaller by just 
leaving out the headers and reading them from first row and first column. Written this 
way, the multiplication table above looks like:

By the way: note that the first two elements by themselves also form a group. When a 
subset of a group forms its own group, it is called a subgroup, written .  Can you 
find any other subgroups?

You can check that this group is abelian (=commutative): when multiplying two 
elements, you get the same product whichever one you put first. One way to see this is 
because the multiplication table is symmetric about the diagonal axis. (In this case, it 
consists only of 1's, but that is not needed for commutativity.)

You will have to break the habit of assuming commutativity! [Example shown in class: 
rotations of an object around different axes can be shown not to commute.]



Side note on associativity  

For a group of order , there are  products in the multiplication table. To check 
associativity, you would have to check  equations - this starts to become a nuisance! 

Just to show you can't ignore this, here is a multiplication table of "octonians." These are 
not associative.

Here each  is a separate dimension over the real numbers. But we can also think of this 
as just 16 different elements , with  the neutral element. Here "-" commutes with 
everything, so we use an 8 by 8 table as a shortcut for a 16 by 16 table.

Problem: 
a) Show each element has an inverse
b) Show this is not a group, because multiplication is not associative

--> a) For example, the table shows , which means , the neutral 
element. So , or the inverse of  is . More generally, you can find an inverse 
to each element, because there is always  or  in each row (or column.) 
Specifically,  and  are each their own inverse, and for , , . 

--> b) Sometimes, this multiplication is associative, so you have to hunt around for a case 
when it isn't. For example: 



In general, it would take a lot of work to show associativity if we have to verify it for all  
lists of 3 elements of . But in the cases we consider, we usually don't write 
multiplication tables completely from scratch, but instead consider generators and 
relations, in which case groups "inherit" associativity as quotients of free groups. 
Similarly, permutations are inherently associative, and so are groups defined as 
permutations.

How many groups are there with three elements?

--> Here it helps to work out a multiplication table. Call the elements 1, a, and b. It is easy 
to start filling out the table:

But what is ? At this point, it may seem that it would be either 1, a, or b, but the 
following mini-theorem makes our work easier:

The Groupdocu theorem: each row (resp. column) of a group G's multiplication table is a 
permutation of the group's elements - i.e. it contains each element of G exactly once.

Proof For example, labeling the elements of G by indexes, suppose the value  occurs 
twice in row , namely in columns  and . Then we would have:

We can multiply this equation on the left by  to obtain (left and right ends):

Now we use the associative rule on each end, and in both cases the first factor is 
, which cancels out, leaving .

As you learn group theory (and algebra, for that matter) you'll see and do lots of proofs 
with this kind of logic!



Getting back to the multiplication table above,  is thus either  or , since  is already 
taken in 's row. But if , then the only element left to fill in for  would be . 
But you can't have , because you already have  and two values  in 's 
column would violate the Groupdocu theorem!
So , and it is easy to fill out the table from there - showing there is exactly one 
group of order 3.

By the way, once we know this, we can just call the element  by the name of , and now 
everything is defined in terms of one generator a, and it follows this multiplication is 
associative. The table is shown as  (on the left):

But there is another way we can think of the table (shown as H on the right.) 
H uses the operation of addition (+), and now the table for the operation is an addition 
table, not a multiplication table. H's operation is associative for the same reason, and its 
neutral element is . 
The way we can see the two groups are "the same" is to note there is a map between 
elements (call it " ") that maps row headers as shown (e.g. .)
We can see that this map also "respects" the two operations, for example as follows:

In other words,  turns "*" into "+", and "commutes" with the two different operations of 
groups G and H. Such a map is called a homomorphism (more generally, just 
morphism).

There are several more specific kinds of morphisms:

An isomorphism can be done backwards, as for example for .
An epimorphism maps onto each element of its target group, again as is true 
for . But  would no longer be an epimorphism if  also contained other 
elements that are not images  for any .
A monomorphism maps 1-1, meaning two different elements never have the 



same image. A counterexample would be the map "0" (which we think of as a 
function, not an element!) that maps all of G to the element 0 in H. 
This is in fact a homomorphism (a trivial one), but it is not a monomorphism, 
nor is it an epimorphism.

As the order increases, there are more possible groups:

How many different groups are there with four elements?

--> We showed the two groups in class. Using the "groupdocu theorem", you can work out 
that you get the table above ("Klein group") if no element has order 4, in which case, the 
only possible order of elements is 2. If you do have elements of order 4, call one of them , 
and you can see that a good way to define this is just as a group generated by one element 

, such that . Here we write this as a presentation, first listing one generator, and 
then showing the relation satisfied the the generator:

Such a group is called "cyclic"

Note: this suggests thinking of the group in two isomorphic ways: the notation  
stands for taking the integers  (with operation addition), and "dividing" them by 4, or 
really by the sugbroup 

How may groups are there with five elements?

--> By now, you should be getting used to the idea that for any positive , there is a cyclic 
group of order n generated by 1 element a: 

But is this the only possibility for five elements? if we try to write out a multiplication 
table, starting with , the groupdocu rule is less helpful.

So we ask how big is the subgroup  generated by a? This turns out to be a very helpful 
result, whose proof uses the important technique of cosets.

Definition, for a subset , and an element , the (right) coset is defined as 
. Similarly, one can define left cosets .



Lemma: If , the cosets  partition all the elements of g - i.e. each 
element  is in exactly one coset, represented by one of the .

Proof: try to prove this on your own, and we'll review it in class!

The number of cosets for  in  is written .

Lagrange's theorem: for a subgroup  of a finite group , the orders divide: . 
Specifically, 

(Notice how the notation is building up?!)

Proof: each coset has the same number of elements as  
(The blacksquare means we're done proving the theorem. Make sure you understand the 
proof!)

Corollary: the order  of  divides 

Prove this.

Now back to groups of order 5: any element that is not order 1 (namely anything other 
than the neutral element) has to have order 5, since there are no other orders that could 
divide 5. Therefore, all groups of order 5 are isomorphic to the cyclic group.

More generally, all groups of prime order are cyclic.

How may groups are there with six elements?

--> There is certainly the cyclic group .

But note that in order 4 we saw hints at another way to make a group: we can take two 
groups  and  and take their abelian 
product ("direct product")  by saying everything in H commutes with 
everything in K, and specifying elements of  as pairs 
Here the set  is isomorphic to , and we think of these as the same thing 
(similarly for K.)



This is a convenient way to make new groups, and a group specified this way is easy to 
understand.

Problem What group is  ?

--> Homework - we'll discuss in class.

6 is the first order for which there is a non-abelian group : the permutations of 3 
objects (1, 2, and 3.) We write such permutations in cycle notation. For example, (1 2) is 
the permutation that sends 1->2 and 2->1 (the end of a cycle gets sent back to its 
beginning.) Also, any element not shown in the cycle gets sent to itself. So another way of 
showing the same permulation would be (1 2)(3).

We will spend a lot of time with this group, so let's write out its table, including three 
specially named elements (a, b, and c):

CAUTION: the way we write it, the column header shows which permutation acts first 
and the row header shows what happens next. So  means:

In each list, the first arrow is the action of (1 2), and the second arrow that of (1 2 3).
You can think of the permutations sitting on the right side of what they permute, and to 
multiply, you go from right to left. This is called "acting on the right."

By contrast, functions are often though to "act on the left", so given functions  and , 
their product  is typically defined as , so "g happens first." Now 
that we are in a nonabelian world, you have to sweat these details!

Problem (to be reviewed in class) Consider these two subgroups generated by single 
elements:  and 



What are their orders?
What are left cosets of H in G? What about the right cosets?
What are the left cosets of K in G? What about the right cosets?
Is ?

Normal subgroups  

If , if for any , , we say  is normal in , written  (note 
the different sign with a triangle instead of just <.)

Normal groups let you do all kinds of cool things like taking a quotient , as we'll 
discuss more.

For now:

Problem: Is ? Is ?

Problem: what are all the normal subgroups of ? What about of the Klein group?

--> Hint both the trivial group <1> and entire group are normal in itself. If a group has no 
other normal subgroups, it is called simple. See if you can find any other normal 
subgroups besides these "trivial" ones.

Other topics we'll mention tomorrow:

The structure of finite abelian groups  

These are easy, partly because every subgroup of an abelian group is normal.



Conjugation and conjugacy classes  

A conjugate of  by  is . If h commuted with g, you would have simply 
, so conjugation moves things around only when, and to the extent that, they don't 

commute. You can define a similar conjugate of a whole set of elements, like of a 
subgroup.

Problem what are the conjugates of (1 2) in ? How does this relate to the question: 
what are the conjugates of  in ?

To give you a sense of how ueful this is:

Definition: a p-group for a prime p is a group whose order is  for positive integer .

Definition: the center  of a group  is the set of elements that commute with 
everything: .

Theorem: Every p-group has a center consisting of more than just the neutral element.

Corollary: Prove that there are only two groups of order  for  prime - just the abelian 
groups  and 

Sylow theorem: if  is the highest power of p that divides the order  of : 

G has subgroups of order 
The number of these is  (mod ) 
They are all conjugate in 

Every group is a permutation group  

Prove this



--> Hint, you can think of how each element g permutes the set of elements on G by 
multiplying on the right side...

But, you might also be able to think in terms of cosets.

Problem Using all you have learned so far, how many groups are there of order 8? First, 
how many abelian groups?

Non-abelian finite groups can get very complicated! No one has found a clean way to 
classify them, even though one of the big 20th century triumphs of math was to classify 
all the finite simple groups.

Motivating thought, from "The Theory of p-Groups", by David A. Craven, '08:

In the table below,  is the number of groups of order n. What patterns do you notice?

 



Conclusion  

You have now been exposed to many of the concepts in a standard undergrad course in 
group theory. After next time, you will have more experience with standard results.

But you already have enough tools to work out lots of examples. 
Suggested effort: try to work out all the different groups of orders up to 15!

If you want a bigger challenge, try the groups of order 16. 

Recommended sources:  

One very clear and succinct exposition is: "Notes on finite group theory" by Peter J. 
Cameron (13) - available online.

Here is a good recent undergrad text, but it's still easy to get lost in all the many 
definitions and theorems:
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