Expanding Fractions II

BMC Beginner Spring 2020
March 18, 2020

1 Cycles

Exercise 1.1. Use a calculator to write out the decimal expansions of the following fractions.

$$
\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}, \frac{1}{10}, \frac{1}{11}, \frac{1}{12}, \frac{1}{13}, \frac{1}{15}, \frac{1}{16}, \frac{1}{17}, \frac{1}{18}, \frac{1}{20} .
$$

Which of them terminate and which of them have repeating decimals? Can you find a pattern to see which denominators terminate and which do not?

Exercise 1.2. Fill out the following table. Some rows are already filled out to help you.

n	Powers of 10 modulo n	Cycle Length
2	$1,0,0$	0
3	$1,1, \ldots$	1
6	$1,4,4, \ldots$	1
7		
8		
9		
11		
13		
17		
19	$1,10,5,12,6,3,11,15,17,18,9,14,7,13,16,8,4,2,1$	
21		
22		
37		
41		

Exercise 1.3. What do the powers of 10 modulo n have to do with the decimal expansion of $\frac{1}{n}$?
Exercise 1.4. A cyclic number is an integer of length n such that if you multiply it by all the numbers from 1 to $n-1$, you get the same numbers except rotated by some amount. It is best shown via an example. The smallest cyclic number is 142857 because

$$
\begin{aligned}
& 1 \times 142857=142857 \\
& 2 \times 142857=285714 \\
& 3 \times 142857=428571 \\
& 4 \times 142857=571428 \\
& 5 \times 142857=714285 \\
& 6 \times 142857=857142
\end{aligned}
$$

Where have you seen this cyclic number before? Find another cyclic number (Hint: look at the first exercise)

Conjecture 1.5 (Artin's Conjecture). There are an infinite number of cyclic numbers.

2 Continued Fractions

Exercise 2.1. One thing to notice is that the fractions we've dealt with always terminate or repeat. Why is this always the case?

Exercise 2.2. Consider the decimal $0.101001000100001 \ldots$, with the number of 0 s between each 1 increasing. Can this be written as a fraction? Why or why not?

Definition 2.3. A number that cannot be written as a fraction of the form $\frac{p}{q}$ is called irrational.
Exercise 2.4. The number $a=\sqrt{2}$ is a number such that $a^{2}=2$. Is a rational or irrational? Use your calculator to find the first terms of the decimal.

Exercise 2.5 (Challenge). Suppose that a is rational and that $a=p / q$. Then $(p / q)^{2}=2$ so $p^{2} / q^{2}=2$ or $p^{2}=2 q^{2}$. What does that mean about whether p or q is even or odd? Can you prove that a must be irrational?

Decimals are not the only way to represent numbers. Another way is called continued fractions. We will look at simple continued fractions which look like

$$
1+\frac{1}{2+\frac{1}{3+\frac{1}{4+\frac{1}{5}}}}
$$

Exercise 2.6. In order to simplify these continued fractions, start at the bottom and work up. Simplify the following two continued fractions as a single improper fraction:

$$
4+\frac{1}{3+\frac{1}{2}} \quad 2+\frac{1}{1+\frac{1}{3+\frac{1}{4}}}
$$

In order to simplify writing these fractions, we use list notation to write

$$
\left[a_{1} ; a_{2}, a_{3}, a_{4}\right]=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}}}}
$$

Exercise 2.7. Express the following as continued fractions. You do not need to simplify the continued fractions.

$$
[3 ; 1,3,5] \quad[1 ; 1,1,1,2] \quad[5 ; 4,3,2,1]
$$

Exercise 2.8. Rewrite the following continued fractions in list notations.

$$
4+\frac{1}{3+\frac{1}{2}} \quad 2+\frac{1}{1+\frac{1}{3+\frac{1}{4}}}
$$

Exercise 2.9. Can you always simplify a simple continued fraction into a single fraction? Can it ever be irrational?

Exercise 2.10. Can the infinite continued fraction

$$
1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\cdots}}}}=[1 ; 2,2,2, \overline{2}]
$$

be represented as a fraction? (Challenge) Can you calculate what it is?
These problems were taken from session worksheets held by the Math Teachers Circle. These were held by Tom Davis, Steve Pelikan, and Steve Phelps.

