Expanding Fractions II

BMC Beginner Spring 2020

March 18, 2020

1 Cycles

Exercise 1.1. Use a calculator to write out the decimal expansions of the following fractions.

 $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}, \frac{1}{10}, \frac{1}{11}, \frac{1}{12}, \frac{1}{13}, \frac{1}{15}, \frac{1}{16}, \frac{1}{17}, \frac{1}{18}, \frac{1}{20}.$

Which of them terminate and which of them have repeating decimals? Can you find a pattern to see which denominators terminate and which do not?

Exercise 1.2. Fill out the following table. Some rows are already filled out to help you.

n	Powers of 10 modulo n	Cycle Length
2	1, 0, 0	0
3	$1, 1, \ldots$	1
6	$1, 4, 4, \ldots$	1
7		
8		
9		
11		
13		
17		
19	1, 10, 5, 12, 6, 3, 11, 15, 17, 18, 9, 14, 7, 13, 16, 8, 4, 2, 1	18
21		
22		
37		
41		

Exercise 1.3. What do the powers of 10 modulo n have to do with the decimal expansion of $\frac{1}{n}$?

Exercise 1.4. A cyclic number is an integer of length n such that if you multiply it by all the numbers from 1 to n - 1, you get the same numbers except rotated by some amount. It is best shown via an example. The smallest cyclic number is 142857 because

 $1 \times 142857 = 142857$ $2 \times 142857 = 285714$ $3 \times 142857 = 428571$ $4 \times 142857 = 571428$ $5 \times 142857 = 714285$ $6 \times 142857 = 857142$

Where have you seen this cyclic number before? Find another cyclic number (Hint: look at the first exercise)

Conjecture 1.5 (Artin's Conjecture). There are an infinite number of cyclic numbers.

2 Continued Fractions

Exercise 2.1. One thing to notice is that the fractions we've dealt with always terminate or repeat. Why is this always the case?

Exercise 2.2. Consider the decimal 0.101001000100001..., with the number of 0s between each 1 increasing. Can this be written as a fraction? Why or why not?

Definition 2.3. A number that cannot be written as a fraction of the form $\frac{p}{q}$ is called **irrational**.

Exercise 2.4. The number $a = \sqrt{2}$ is a number such that $a^2 = 2$. Is a rational or irrational? Use your calculator to find the first terms of the decimal.

Exercise 2.5 (Challenge). Suppose that a is rational and that a = p/q. Then $(p/q)^2 = 2$ so $p^2/q^2 = 2$ or $p^2 = 2q^2$. What does that mean about whether p or q is even or odd? Can you prove that a must be irrational?

Decimals are not the only way to represent numbers. Another way is called continued fractions. We will look at simple continued fractions which look like

$$1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{5}}}}$$

Exercise 2.6. In order to simplify these continued fractions, start at the bottom and work up. Simplify the following two continued fractions as a single improper fraction:

$$4 + \frac{1}{3 + \frac{1}{2}} \qquad \qquad 2 + \frac{1}{1 + \frac{1}{3 + \frac{1}{4}}}$$

In order to simplify writing these fractions, we use list notation to write

$$[a_1; a_2, a_3, a_4] = a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}$$

Exercise 2.7. Express the following as continued fractions. You do not need to simplify the continued fractions.

$$[3; 1, 3, 5] [1; 1, 1, 1, 2] [5; 4, 3, 2, 1]$$

Exercise 2.8. Rewrite the following continued fractions in list notations.

$$4 + \frac{1}{3 + \frac{1}{2}} \qquad \qquad 2 + \frac{1}{1 + \frac{1}{3 + \frac{1}{4}}}$$

Exercise 2.9. Can you always simplify a simple continued fraction into a single fraction? Can it ever be irrational?

Exercise 2.10. Can the infinite continued fraction

$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}}} = [1; 2, 2, 2, \overline{2}]$$

be represented as a fraction? (Challenge) Can you calculate what it is?

These problems were taken from session worksheets held by the Math Teachers Circle. These were held by Tom Davis, Steve Pelikan, and Steve Phelps.