How many points are on a plane?

Euclid's axioms

1. **Parallels**: Can't have two different lines through two points and one always exists.

2. A line is defined by two points.

- Can't have 2 different lines through two points
- And one always exists

Definition A **plane** is a set, with elements called **points**, with special subsets called **lines** which satisfy the following properties.

A1. **(Incidence Axiom)** Every two distinct points belong to a unique line.

A2. **(Parallel Axiom)** For every line and a point not on it there is a unique line containing this point parallel to the given line.

A3. **(Dimension Axiom)** There exist 3 points which are not collinear.

Ex. 1.

Not a plane: 5 points, 1 line

Ex. 2.

Problem: lines \(l_1 \) and \(l_2 \) are \(\perp \) to \(l_1 \) and pass through \(A \). So A2 uniqueness doesn't hold.
\[E_{43} \]

\[4 \text{ pts} \quad \text{6 lines} \]

\[\text{It is indeed a plane!} \]
\[\text{(smallest that exists)} \]

so 4 pts can be on a plane

Th.1

Every line has at least 2 pts

Pf.

Assume that \(l \) has only 1 pt \(A \)

\[\exists \text{ line } l \quad l, C \text{ exists } \quad \text{1} \]

\[l_1 = AB \]

\[l_2 \parallel l_1 \quad l_2 \text{ contains } C \]

\[\Rightarrow \quad \text{Both } l \text{ and } l_1 \text{ are } \parallel l_2 \text{ and pass through} \]

\[\Rightarrow \quad \text{violation of uniqueness in } A2 \]

Similarly, no empty lines \(\Rightarrow \) all lines must have at least 2 pts.

Th.2

All lines have same number of pts.

Pf.

Take two lines \(l_1 \) and \(l_2 \), assume \(l_1 \) and \(l_2 \) pass \(A \)

\[l_1 \parallel PQ \quad \text{1 passes through } X \text{ on } l \]

\[\text{the } l \text{ intersects } l_2 \text{ (only violates A2)} \]

\[l_1 \parallel l_2 \]

\[l_1 \parallel \]
How many points are on a plane?

1, 3, 10, 9, 14, 11, 15 8, 3 4 7, 2 6 8, 1 7, 2 9

Fact: Any two cards belong to a unique set.
How many sets are here?

12 sets. Why no more?

And in fact, this is a 9pt plane with points = cards, lines = sets.

Baby set with only 2 "variables" left, i.e., it is 2-dimensional.

So the big set is a 4-dim space.
Questions:

1. Can there be a plane with 5, 6, 7, 8 points? (No! But why?)
2. Show that if a line has n points, then the plane has n².
3. Can we have 16 or 25 points?
4. How about 36?