How many points are on (a) plane?

Eudid's axioms

(i) parallels?
(2) a line is defined 6 on

Definition A plane is a set, with elements called points, with special subsets called LINES which satisfy the following properties.
A1. (Incidence Axiom) Every two distinct points belong to a unique line.
A2. (Paralles Axiom) For every line and point not on it there is a unique line containing this point parallel to the given line.

A3. (Dimension Axiom) There exist 3 points which are no collinear.

\because not a plane
bic. it fils dinA
EnL

$$
\begin{aligned}
& \text { problem: lines } l_{1} \text { and } l_{2} \\
& \text { are } 11 \text { to } l_{\text {and }} \text { and pass } \\
& \text { through } A
\end{aligned}
$$

So A2 unimensss dent hold.
$E x^{3}$

\leftarrow It is indeed, a plane! (smallest that exists)
so 4 pts can be on a plane
Th Every line has at least 2 pts
Pf Assume that l has \quad only 1 pt $\&$ conctival l_{B} coexists bey Al

$$
\frac{l_{2}}{c} \quad l=A B \quad l_{1}=1 \| l_{1} \quad l_{2} \text { contains } C
$$

$$
\begin{aligned}
& \Rightarrow \text { both } l_{\text {and }} l_{1} \text { are } \| l_{2} \text { and pass than ut } \\
& \Rightarrow \text { violdtran }
\end{aligned}
$$

$$
\Rightarrow \text { volution of uniqueness in } A 2
$$

similarly, no eupter lines \Rightarrow all lines must have at least 2 pts.
The) All lines have same number of pts.
If Take two lines l_{1} and l_{2}, assume h and l_{2} ross A,

How many points are on a plane? $(13,10)(9,10,11)(158)(347) 268)(1,2,9$

Fact Any two "pts" (cards) belong to a unique set.

12 sets Why no more?

Questions: : Can there be a plane w 5,6,7,8 prints?
2. Show that if a line has n pice, then the plane hes n ?
3. Can we have 16 or 25 pis?
4. Hor cloak 36?

