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These are rather sketchy notes for a talk given to the Berkeley math circle
(https://mathcircle.berkeley.edu/). There will probably be a video of the talk
available on youtube.

1 10-adic integers

Problem: find a number whose square ends in the same 10 digits. Smaller
examples are things like 762 = 5776, 6252 = 390625, and so on. Two solutions
are 1787109376 and 8212890625. We can find the second by repeatedly squaring
5: 5→ 25→ 625→ 390625→ . . .

What happens if we continue this forever to get an ”infinitely long integer”?
This seems at first sight to make no sense, but is in fact something called a
10-adic number.

An ordinary integer can be represented as something like −12345 with a
sign and a finite number of decimal digits. A 10-adic number is similar except
that we omit the sign and allow an infinite string of digits going off to the left;
for example · · · 87654321. This differs from real numbers such as 3.1415926 · · ·
which have an infinite string going off to the right.

What can we do with 10-adic integers?
We can add them using the usual rules of arithmetic. This is because the

last n digits of a + b depend only on the last n digits of a and b. For example
· · · 987 + · · · 444 = · · · 431. Similarly we can multiply them.

Exercise 1.1. What is 1 + 9× · · · 1111111?

What about subtraction? You might think we need to put a sign in front to
allow negative 10-adic integers, but in fact we do not. For example · · · 99999 +
1 = 0. (You used to be able to see this on mechanical odometers.) The negative
of a number is got by taking the 9’s complement of each digit then adding
1. For example, the negative of · · · 3210 is got by taking · · · 6789 and adding
1 to get · · · 6790. The reason this works is that the 9’s complement of n is
· · · 99999− n = −1− n, so if we add 1 we get −n.

Computers these days treat integers as a sort of 2-adic number (in base 2
rather than base 10). For example, on an 8 bit computer, the integer −1 is
represented as 11111111.
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So we have addition, subtraction, and multiplication, and these obey most
of the usual rules of algebra (in other words the 10-adic integers form a RING).
How do we check this? We know the integers mod 10n form a ring (denoted
Z/10nZ). A 10-adic number such as · · · 712 can be thought of as a series 2, 12,
712, ... of integers mod 10, 100, 1000, that are compatible. (This construction
is sometimes called a “projective limit” or “inverse limit” as we are taking a sort
of weird limit of the rings Z/10nZ.) We can multiply and add 10-adic numbers
by just doing this mod 10, 100, 1000, and so on, so since the usual rules work
for integers mod 10n they also work for 10-adic numbers.

Now try division. 1/2 does not exist, as if n is a 10-adic number then the
last digit of 2n is even, not 1. Similarly we cannot form the inverse of any
even 10-adic integer, or any 10-adic integer divisible by 5. What about 3?
If · · · 9999 is −1 then · · · 3333 is −1/3, so 1/3 is · · · 6667. What about 1/7?
For real numbers 1/7 = ·142857142857 . . . repeating endlessly, and we can find
2/7, 3/7, ... by shifting this. Let’s try · · · 142857× 7. We get · · · 99999 = −1. So
1/7 = · · · 857142857142 + 1 = · · · 857142857143.

Exercise 1.2. Find the numbers 1/7, 2/7, 3/7, 4/7, 5/7, 6/7 as real numbers
and as 10-adic numbers. What do you notice?

In general we can divide by any 10-adic integer whose units digit is 1, 3, 7,
or 9, using a sort of long division process (which is just as tedious for 10-adic
numbers as it is for real numbers).

What about square roots? Here we run into a complication: a 10-adic integer
can have more than 2 square roots, which is rather tiresome. The problem is
that it is possible to have ab = 0 even if a and b are both nonzero. In fact
we saw an example at the beginning of this talk: we found a number with
xx = x but x 6= 0, 1, so x(x− 1) = 0 and both factors are nonzero. This means
that 1 has at least 4 square roots, because as well as 1 and −1 we also get
· · · 3574187512 = (2x− 1)2 = 1.

This problem can be traced back to the fact that the integers mod 10 have
zero divisors (ab = 0 but a 6= 0, b 6= 0), which in turn is due to the fact that
10 has more than 1 prime factor. This suggests that instead of using 10-adic
numbers, we will get a better theory by looking at p-adic numbers for a prime
p.

2 p-adic numbers

We construct the p-adic numbers for p a prime in the same way we construct
the 10-adic integers, except of course we work in base p not base 10.

There is a bonus property coming from the fact that p is prime: there are
no zero divisors. In other words, if a and b are nonzero p-adic integers then so
is ab. To see this look at the rightmost nonzero digits of a and b. The product
of these mod p is nonzero as p is prime, and is the rightmost nonzero digit of
ab.
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What about unique factorization into primes for p-adic integers? Recall that
every nonzero integer has a factorization into primes and units that is unique
up to units and order. For p adics the same is true but much simpler because
there is only one prime (p of course). In fact any nonzero p-adic integer is a
power of p times something with nonzero units digit, and the p-adic integers
with nonzero units digit all have inverses.

Example: the 2-adic integer 1010002 = 1032 × 1012 (where 102 means 2.
The p-adic numbers. We can also invert p is we allow digits after the decimal

(p-adic?) point, because ·1 = 1/p, just as in base p. We call something with
an infinite number of digits before the point and a finite number after a p-adic
number (rather than integer). So any nonzero p-adic number n has an inverse
1/n. We say the p-adic numbers form a field, because they have the 4 operations
+, -, ×, /.

Square roots: When does a nonzero 3-adic number have a square root? First
of all we can take out factors of 3, and there most be an even number of these.
So we reduce to the case when the units digit is 1 or 2. If the last digit is 2
there is no square root, even mod 3. So what if the last digit is 1? Then we can
always find a square root. For example, we can find the square root of 7 = 213
as · · · 0111 by finding the digits one by one. (There are much faster ways of
course, such as Newton’s method.)

Exercise 2.1. Find the first three digits of the square root of ten in the 3-adic
integers.

Finding each digit requires us to divide by 2, so this does not work for 2-
adic integers, and for these square roots are more complicated. For example,
5 = 1012 has no square root even though its units digit is 1.

Exercise 2.2. (Easy) Find the first few digits of
√

17 in the 2-adic integers.
(Hard) Show that a 2-adic integer that is a unit has a square root if and only if
its last 3 digits are 001.

3 Sequences and series

We first define the size of a p-adic or real number. For a real number its size is
just the absolute value |x|∞. For a p-adic number we define the size |x|p to be
pn where pnx is a unit. (And |0|p = 0.) So the number pn for n large is a large
real number but a small p-adic number.

Exercise 3.1. Show that |xy|p = |x|o|y|p.

Exercise 3.2. Show that if x is a rational number then the product of all the
numbers |x|p for p a prime or infinity is 1. (Hint: first prove it for primes.)

For real numbers we can define the distance d(x, y) between them to be
|x− y|∞ and this satisfies the inequality d(x, z) ≤ d(x, y) + d(y, z). For p-adics,
we can define distance as d(x, y) = |x− y|p.
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Exercise 3.3. Show that d(x, z) ≤ d(x, y) + d(y, z) for p-adic numbers. Better
still, show that d(x, z) ≤ max(d(x, y), d(y, z)).

For real numbers, convergence of a series can be very tricky. For example,
the series 1 + 1/2 + 1/3 + · · · does not converge even though the terms tend to
0, while the sum of the series log(2) = 1− 1/2 + 1/3− · · · changes if we change
the order of the terms. For p-adic numbers, things are much simpler: a series
converges if and only if its terms terns to zero (meaning that their p-adic sizes
tend to 0).

For example, the series 1 + x + x2 + · · · converges p-adically if |x|p < 1.
We can now try to define exponential functions and logarithms of p-adic

numbers. Logarithms are a bit easier so we do these first. We recall that for
the reals,

log(1 + x) = x− x2/2 + x3/3− · · ·

at least if |x|∞ < 1 which is needed to make the series converge. For example, we
can work out the 2-adic log of 3 to 3 significant figures as 2−22/2+23/3−24/4.

For the real numbers we have the exponential function

exp(x) = ex = 1 + x + x2/2! + x3/3! + · · ·

The p-adic exponential function is a bit more complicated. The number e is
not defined, so we try to use the exponential series. At first sight convergence
seems easy because the numbers 1/n! look very small. However they are in fact
rather large p-adically!

Example: We calculate exp(3) is the 3-adic integers as 1+3+32/2+33/6+....
In ”base 3” this is 1 + 10 + · · · 1111200 + · · · 1111200 + · · · = · · · 111.

Exercise 3.4. Find the next two digits of exp(3) in the 3-adic integers.

To study when exp converges we need to know how many times p divides
n!. This is given by [n/p] + [n/p2] + [n/p3] + · · · , where x is the integer part of
x. This sum is at most n/(p− 1).

Exercise 3.5. Show that if p is an odd prime then exp(x) converges if x is
divisible by p. What happens if p = 2?

The log and exp functions obey most of the usual rules at least when they
are defined; for example, exp(a + b) = exp(a) exp(b). One way to define powers
is by ab = exp(b log a), at least for a close to 1 and b close to 0.

Exercise 3.6. The Bessel function J0(x) can be defined as

J0(x) = 1− (x/2)2/1!2 + (x/2)4/2!2 − (x/2)6/3!2 + · · ·

When does this converge for x real? What about for x a p-adic integer for p
odd?
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4 The p-adic Gamma function

The gamma function is more or less the same as the factorial function except for
a change of variable: Γ(n + 1) = n!. Euler found a way to extend it to positive
real numbers x.

Γ(x) =

∫ ∞
0

e−ttx−1dt

Exercise 4.1. Prove that Γ(x + 1) = xΓ(x) (hint: integrate by parts). Prove
that Γ(1) = 1. Prove that Γ(n + 1) = n! when n is a positive integer (hint:
induction).

Can we find a p-adic factorial or gamma function? Let’s try to define a
factorial function from Z/pZ to Z/pZ. This is a complete flop because n! ≡
0 mod p for n ≥ p.

Try again. The problem is the numbers divisible by p, so we just miss them
out and try defining n!p to be the product of all numbers from 1 to n that are
not divisible by p. For example, if p = 5 then the values for this mod 5 are

1, 1, 2, 1, 4, 4, 4, 3, 4, 1, 1, 1, 2, 1, 4, 4, 4, 3, 4, ...

This is much better but still not quite right: it is periodic, but the period is 10
not 5. Looking more closely we see that if we add 5 to n we change the sign of
n!5. This is easy to fix: we just put in a factor of (−1)n. So (−1)nn!5 is well
defined mod 5 if n is defined mod 5.

The key point that made this work it that the product of all numbers 1, 2,
3, 4 is −1 mod 5. The same works for any ODD prime power pk: the product
of all numbers from 1 to pk not divisible by p is −1 mod pk. This is called
Wilson’s theorem, and shows that (−1)nn!p is well defined mod pk and so gives
a function from p-adic integers to p-adic integers.

We can prove Wilson’s theorem by observing that all the numbers from 1 to
pk − 1 not divisible by p pair off into pairs a, b with ab ≡ 1 mod pk, except for
the numbers ±1 with square 1.

Exercise 4.2. (Easy) What happens if you try to use Wilson’s theorem for
pk = 23? In other words what is the product of all odd numbers from 1 to 7
mod 23? How many solutions of x2 ≡ 1 mod 23 are there? (Hard) Can you
think of a way to define a 2-adic factorial?

Further reading.
Borevich and Shafarevich, Number theory.
J.-P. Serre, A course in arithmetic
N. Koblitz, p-adic numbers, p-adic analysis and zeta functions. This dis-

cusses more advanced topics such as p-adic integration and p-adic analogs of
the Riemann zeta function.
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