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In this article we introduce a special kind of polygon called a reflexive polygon, and
higher-dimensional generalizations called reflexive polytopes. In two dimensions, re-
flexive polygons are also called Fano polygons, after Gino Fano, an Italian mathemati-
cian born in 1871 who studied the relationship between geometry and modern algebra.

Two theoretical physicists, Maximilian Kreuzer and Harald Skarke, worked out
a detailed description of three- and four-dimensional reflexive polytopes in the late
1990s. Why were physicists studying these polytopes? Their motivation came from
string theory. Physicists use these polytopes to construct Calabi-Yau manifolds, which
are geometric spaces that can model extra dimensions of our universe. A simple re-
lationship between “mirror pairs” of polytopes corresponds to an extremely subtle
connection between pairs of these geometric spaces. The quest to understand this
connection has created the thriving field of mathematical research known as mirror
symmetry.

What are reflexive polytopes? What does it mean to classify them? Why do they
come in pairs? How can we build a complicated geometric space from a simple ob-
ject like a triangle or a cube? And what does any of this have to do with physics? By
answering these questions, we will uncover intricate relationships between combina-
torics, geometry, and modern physics.

Classifying reflexive polygons

The points in the plane R2 with integer coordinates
form a lattice, which we’ll name N . A lattice polygon
is a polygon whose vertices are in the lattice; in other
words, lattice polygons have vertices with integer co-
ordinates. We consider only convex polygons. An ex-
ample of a convex lattice polygon is in FIGURE 1.

We say a lattice polygon is a Fano polygon if it has
only one lattice point, the origin, in its interior.

How many Fano polygons are there? Can we list
them all? The first step is to pull out our graph pa-
per and try to draw a Fano polygon. A little exper-
imentation will produce several Fano polygons, in-
cluding triangles, quadrilaterals, and hexagons. Some
examples are shown in FIGURE 2.

Figure 1 A lattice polygon

There are also ways to make new Fano polygons, once we find our first Fano poly-
gon. For instance, we may rotate by 90 degrees or reflect across the x-axis. A more
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(a) (b) (c)

Figure 2 Fano triangle, quadrilateral, and hexagon

complicated type of map is the shear, which stretches a polygon in one direction. We
can describe the shear using matrix multiplication: We map the point

( x
y

)
to(

1 1
0 1

)(
x
y

)
=

(
x + y

y

)
.

In FIGURE 3 we illustrate the effects of this shear on a Fano triangle. Notice that after
the shear, in FIGURE 3(b), there is still only one point in the interior of our triangle.
Repeating the shear map, as seen in FIGURES 3(c) and 3(d), makes our triangle longer
and skinnier. Iterating the shear map produces an infinite family of Fano triangles, each
one longer and skinnier than the one before it.

(a) Our starting triangle (b) Triangle after shear map

(c) Triangle after two shears (d) Triangle after three shears

Figure 3 Effects of shears

This means that listing all Fano polygons is an impossible task! But we would still
like to classify Fano polygons in some way. To do so, we shift our focus: Instead of
counting individual Fano polygons, we will count types or classes of Fano polygons.
We want two Fano polygons to belong to the same equivalence class if we can get from
one to the other using reflections, rotations, and shears. Each map that we use should
send lattice polygons to other lattice polygons.

Reflections, rotations, shears, and compositions of reflections, rotations, and shears
are all linear transformations of the plane. In other words, they can be described by
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two-by-two matrices. Let A =
(

a b
c d

)
be a matrix, where a, b, c, and d are real numbers.

We let m A be the “multiplication by A” map:

m A :

(
x
y

)
7→

(
a b
c d

)(
x
y

)
.

What conditions do we need to place on the matrix A to ensure that the correspond-
ing map m A sends Fano polygons to other Fano polygons? First, the map must send
polygons to polygons, rather than squashing them into line segments. This means that
A must be invertible, so that m A is a one-to-one map from R2 to R2. Furthermore,
m A must send points with integer coordinates to other points with integer coordinates,
so that lattice polygons go to lattice polygons. This will happen when A has integer
entries.

The final condition on A is more subtle. We want two Fano polygons to belong
to the same equivalence class if we can get from one to the other using rotations,
reflections, and shears that map lattice polygons to lattice polygons. But our notion
of equivalence should treat all Fano polygons equally: If two polygons � and �′ are
equivalent, it shouldn’t matter whether we started with � and rotated or sheared it to
form �′, or started with �′ and rotated or sheared it back to �. In other words, our
notion of equivalence must be symmetric. Now, if m A sends � to �′, the map that sends
�
′ back to � is the map m A−1 defined by the inverse matrix A−1. To ensure that m A−1

sends lattice polygons to lattice polygons, we require A−1 to have integer entries.
We can characterize A and A−1 using determinants. Because the product A A−1 is

the identity matrix, (det A)(det A−1) = 1. But the determinant of a matrix with integer
entries is an integer, so det A and det A−1 are both integers. The only way two integers
can multiply to give 1 is for them to be both 1 or both −1, so det A = ±1.

Matrices that satisfy this determinant property have a special name.

DEFINITION. GL(2,Z) is the set of two-by-two matrices
(

a b
c d

)
, which have integer

entries and determinant ad − bc equal to either 1 or −1.

The matrices in GL(2,Z) form a group, which is generated by rotation matrices,
reflection matrices, and the shear matrix

(
1 1
0 1

)
. Thus, the matrices in GL(2,Z) describe

maps that are rotations, reflections, shears, or compositions of rotations, reflections, or
shears.

By construction, for any matrix A in GL(2,Z), the map m A is a continuous, one-
to-one, and onto map of the plane, which restricts to a one-to-one and onto map from
the lattice N to itself. The map sends lattice polygons to lattice polygons. In particular,
the origin is the only lattice point in the interior of a Fano polygon, so it is the only
lattice point that can be mapped to the interior of the image of a Fano polygon. Thus,
this map sends Fano polygons to Fano polygons.

DEFINITION. We say two Fano polygons 1 and 1′ are GL(2,Z)-equivalent
(or sometimes just equivalent) if there exists a matrix A in GL(2,Z) such that
m A(1) = 1

′.

FIGURE 4 shows an example of equivalent polygons.
Now that we have a concept of equivalent Fano polygons, we can try again to de-

scribe the possible Fano polygons. How many GL(2,Z) equivalence classes of Fano
polygons are there?

It turns out that there are only 16 equivalence classes of Fano polygons! A represen-
tative from each Fano polygon equivalence class is shown in FIGURE 5. (The figure
seems to show twenty classes, but four of them are duplicated, for reasons that we will
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∼=

Figure 4 Two equivalent hexagons

investigate in the next section.) We will use the classification of Fano polygons later,
but here we omit the proof; a combinatorial proof may be found in Nill [7].

Polar polygons The vertical arrows in FIGURE 5 indicate relationships between
pairs of Fano polygons. In this section, we explain the correspondence. We start by
asking a simple question: How can we describe a Fano polygon mathematically?

1 2 3 4 5

xy xy xy xy xy

6 7 8 9 10

11 12 13 14 15

xy xy xy xy xy

16 17 18 19 20

Figure 5 Classification of Fano polygons
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One way to describe a polygon is to list the vertices. For instance, for the triangle
in FIGURE 2(a), the vertices are (0, 1), (1, 0), and (−1,−1).

Each edge of a polygon is part of a line, so we can also describe a polygon by listing
the equations of these lines. For the triangle in FIGURE 2(a), the equations are:

−x − y = −1,

2x − y = −1,

−x + 2y = −1.

Of course, there are many equivalent ways to write the equation for a line. We have
chosen ax + by = −1 as our standard form. Any line that does not pass through the
origin can be written in this way. Our standard form has the advantage that the whole
triangle is described as the set of points (x, y) such that

−x − y ≥ −1,

2x − y ≥ −1,

−x + 2y ≥ −1.

Notice that in the case of our Fano triangle, the coefficients a and b in our standard
form for the equation of a line are all integers.

We want to use our edge equations to define a new polygon. We’d like our new
polygon to live in its own copy of the plane. Let’s call the set of points in this new
plane that have integer coordinates M and name the new plane MR. Using the dot
product, we can combine a point in our old plane, NR, with a point in our new plane,
MR, to produce a real number

(n1, n2) · (m1,m2) = n1m1 + n2m2.

If the point (n1, n2) lies in N and the point (m1,m2) lies in M , their dot product
(n1, n2) · (m1,m2) is an integer.

Note that every dot product in this paper combines a vector in NR (on the left) with a
vector in MR (on the right). The lattices N and M are isomorphic, as are the planes NR
and MR, so the distinction between the two planes may seem artificial. However, as we
will see later, the points in the N and M lattices play different roles in the physicists’
construction.

Let’s rewrite the edge equations of our Fano triangle using dot product notation:

(x, y) · (−1,−1) = −1,

(x, y) · (2,−1) = −1,

(x, y) · (−1, 2) = −1.

The points (−1,−1), (2,−1), and (−1, 2) are the vertices of a new triangle in MR.
We say that the new triangle, shown in FIGURE 6, is the polar polygon of our original
triangle.

Suppose (n1, n2) is any point in our original triangle, and (m1,m2) is any point in
its polar polygon. (These points do not need to be lattice points or boundary points;
they might lie in the interiors of the triangles.) If we move the points around, the dot
product (n1, n2) · (m1,m2) will vary continuously. The minimum possible dot product
is−1, as we saw from our edge equations. Thus, the dot product of the two points will
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←→

Figure 6 Our triangle and its polar polygon

satisfy the inequality

(n1, n2) · (m1,m2) ≥ −1.

We can use this inequality to define a polar polygon in general. Let1 be any lattice
polygon in our original plane NR that contains (0, 0). Formally, we say that the polar
polygon 1◦ is the polygon in MR consisting of the points (m1,m2) such that

(n1, n2) · (m1,m2) ≥ −1

for all points (n1, n2) in 1. We can find the vertices of 1◦ using our standard-form
equations for the edges of 1, just as we did above.

The polar polygon of an arbitrary lattice polygon may fail to be a lattice polygon:
The vertices might be rational numbers, rather than integers. On the other hand, the
polar polygon of our example triangle is actually a lattice polygon; even better, it is
itself a Fano polygon.

DEFINITION. Let 1 be a lattice polygon. If 1◦ is also a lattice polygon, we say
that 1 is reflexive.

If 1 is a reflexive polygon, then its polar polygon 1◦ is also a reflexive polygon.
We can repeat the polar polygon construction to find the polar polygon of 1◦. (For
practice, try finding the polar polygon of the second triangle in FIGURE 6.) It turns out
that the result is our original polygon:

(1◦)◦ = 1.

It’s easy to see that every point in 1 is contained in (1◦)◦, using the definition of a
polar polygon. Showing that 1 and (1◦)◦ are always identical is trickier; the proof
(which we omit) depends on the fact that 1 is convex.

We say that a polygon 1 and its polar polygon 1◦ are a mirror pair. The term
reflexive also refers to this property: In a metaphorical sense, 1 and its polar polygon
1◦ are reflections of each other. The fact that the Fano triangle in our example turned
out to be reflexive is not a coincidence.

THEOREM 1. A lattice polygon is reflexive if and only if it is Fano.

Proof. First we show that every reflexive polygon is Fano. Let 1 be a reflexive
polygon, and let (x, y) be a lattice point that lies strictly in the interior of 1. Let
(v1, w1), (v2, w2), . . . , (vk, wk) be the vertices of the polar polygon 1◦; because 1 is
reflexive, the coordinates of each vertex are integers. We know that

(x, y) · (vi , wi ) ≥ −1
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for each vertex (vi , wi ). Because (x, y) lies in the interior of1, the inequality must be
strict:

(x, y) · (vi , wi ) > −1.

But (x, y) and (vi , wi ) are both lattice points, so (x, y) · (vi , wi ) must be an integer.
Thus,

(x, y) · (vi , wi ) ≥ 0.

Now, let a be any positive integer. The point a(x, y) = (ax, ay) is a lattice point, and

a(x, y) · (vi , wi ) ≥ a · 0

≥ −1.

Because (ax, ay) satisfies the inequalities corresponding to each vertex of 1◦, we
conclude that

(ax, ay) · (m1,m2) ≥ −1

for any point (m1,m2) in 1◦. Therefore, (ax, ay) is a point in (1◦)◦ = 1. If (x, y)
is not (0, 0), then we get an infinite number of different lattice points in 1, one for
each positive integer a. But this is impossible: Polygons are bounded, so they cannot
contain infinite numbers of lattice points! Thus, (x, y) must be (0, 0), so 1 is Fano.

We will use the classification of Fano polygons illustrated in FIGURE 5 to show that
every Fano polygon is reflexive. The first step is to make sure that the representatives
of Fano equivalence classes shown in the figure are reflexive polygons. The vertical
arrows in FIGURE 5 connect each of the illustrated polygons to its polar dual (check-
ing this fact is a fun exercise!). The computation tells us that every Fano polygon is
equivalent to a reflexive polygon. Notice that the Fano polygons numbered 12 through
15 in FIGURE 5 are self-dual: Their polar duals are equivalent to the original polygons.
(Can you find the matrix that sends polygon 13 to its polar dual?)

To finish the proof, we must show that if 0 is equivalent to a reflexive polygon 1,
then 0 is also a reflexive polygon. Let 1 be a reflexive polygon, let A be a matrix in
GL(2,Z), and suppose that 0 = m A(1). Let B = (AT)−1, the inverse of the transpose
matrix of A. Taking the transpose of a matrix does not change its determinant, and
the inverse of a matrix in GL(2,Z) is also in GL(2,Z), so B is another member of
GL(2,Z). We claim that 0◦ = m B(1

◦).
Let (n1, n2) be a point in 0, and let (m1,m2) be any point in MR. We know that(

n1

n2

)
= A

(
n′1
n′2

)
for some point (n′1, n′2) in 1. Let(

m ′1
m ′2

)
= B−1

(
m1

m2

)
,

so that (
m1

m2

)
= B

(
m ′1
m ′2

)
.
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Now,

(n1, n2) · (m1,m2) =

(
n1

n2

)T (
m1

m2

)

=

(
A

(
n′1
n′2

))T

B

(
m ′1
m ′2

)

=

(
n′1
n′2

)T

AT B

(
m ′1
m ′2

)

=

(
n′1
n′2

)T (
m ′1
m ′2

)
= (n′1, n′2) · (m

′

1,m ′2).

We see that (n1, n2) · (m1,m2) ≥ −1 if and only if (n′1, n′2) · (m
′

1,m ′2) ≥ −1, and
therefore (m1,m2) is in 0◦ if and only if (m ′1,m ′2) is in 1◦. Thus, 0◦ = m B(1

◦).
Since 1◦ is a lattice polygon, m B(1

◦) must be a lattice polygon, so 0 is reflexive.

A reflexive polygon and its polar dual are intricately related. It’s pretty easy to
see that a polygon and its polar dual have the same number of sides and vertices.
Other connections are more subtle. For instance, the number of lattice points on the
boundary of a reflexive polygon and the number of lattice points on the boundary of
its polar dual always add up to twelve! For the polygons in FIGURE 6, the compu-
tation is 3 + 9 = 12. We can check that this holds in general by counting points in
FIGURE 5 and using the fact that equivalent Fano polygons have the same number of
lattice points. (See [8] for other proofs that the boundary points add to twelve, which
use combinatorics, algebraic geometry, and number theory.)

Higher dimensions

Let’s extend the idea of Fano and reflexive polygons to dimensions other than 2. In
order to do so, we need to describe the k-dimensional generalizations of polygons,
which we will call polytopes. There are several ways to do this. We take the point
of view that polygons are described by writing down a list of vertices, adding line
segments that connect these vertices, and then filling in the interior of the polygon.
Similarly, in k dimensions, our intuition suggests that we should describe a polytope
by writing down a list of vertices, connecting them, and then filling in the inside. The
formal definition is as follows.

DEFINITION. Let {Ev1, Ev2, . . . , Evq} be a set of points in Rk . The polytope with ver-
tices {Ev1, Ev2, . . . , Evq} is the set of points of the form

Ex =
q∑

i=1

ti Evi ,

where the ti are nonnegative real numbers satisfying t1 + t2 + · · · + tq = 1. (The poly-
tope is called the convex hull of the points Evi .)

We illustrate a three-dimensional polytope in FIGURE 7.
Let N be the lattice of points with integer coordinates in Rk ; we refer to this copy

of Rk as NR. A lattice polytope is a polytope whose vertices lie in N .
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Figure 7 A three-dimensional polytope

The one-dimensional case To understand the definition of a lattice polytope better,
let’s consider the one-dimensional polytope that has vertices 1 and −1. Formally, this
polytope consists of all points on the real number line that can be written as 1 · t1 +

−1 · t2, where t1 ≥ 0, t2 ≥ 0, and t1 + t2 = 1. We can visualize this by imagining an
ant walking on the number line. Our ant starts at 0; for a fraction of an hour the ant
walks to the right, toward the point 1, then for the rest of the hour the ant walks left,
toward the point −1. The ant can reach any point in the closed interval [−1, 1], so all
of these points belong to our lattice polytope. This one-dimensional lattice polytope is
shown in FIGURE 8.

0 1 2−1−2

Figure 8 A one-dimensional polytope

The k-dimensional case Just as we did in two dimensions, we can define a dual
lattice M in k dimensions by taking a new copy of Rk , which we’ll refer to as MR, and
letting M be the points with integer coordinates in MR. The dot product pairs points in
NR and MR to produce real numbers:

(n1, . . . , nk) · (m1, . . . ,mk) = n1m1 + · · · + nkmk .

If we take the dot product of a point in our original lattice N and a point in our dual
lattice M , we obtain an integer.

We can use our k-dimensional dot product to define polar polytopes. If1 is a lattice
polytope in N that contains the origin, we say its polar polytope 1◦ is the polytope in
M given by

{(m1, . . . ,mk) : (n1, . . . , nk) · (m1, . . . ,mk) ≥ −1 for all (n1, . . . , nk) ∈ 1}.

We say that a lattice polytope is Fano if the only lattice point that lies strictly in
its interior is the origin, and that a lattice polytope containing the origin is reflexive
if its polar polytope is also a lattice polytope. Just as in two dimensions, we find that
the polar of the polar of a reflexive polytope is the original polytope ((1◦)◦ = 1), and
we say that a reflexive polytope 1 and its polar polytope 1◦ are a mirror pair. We
illustrate a mirror pair of three-dimensional polytopes in FIGURE 9.

Every reflexive polytope is a Fano polytope: The proof that we used to show reflex-
ive polygons are Fano carries through in k dimensions.

However, not every Fano polytope is reflexive. We can construct an example starting
with the cube in FIGURE 9. The cube with vertices at (±1,±1,±1) is both Fano and
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352 MATHEMATICS MAGAZINE

Figure 9 The octahedron and cube: a mirror pair

reflexive. But we can form a new polytope from the cube by removing the vertex
at (1, 1, 1) and taking the convex hull of the remaining lattice points. The resulting
polytope is shown in FIGURE 10. It is clearly Fano, since the origin lies in the interior,
and we have not added any lattice points. However, it is not reflexive. The equation
of the face spanned by the new vertices (0, 1, 1), (1, 0, 1), and (1, 1, 0) is x + y +
z = 2, or − 1

2 x + − 1
2 y + − 1

2 z = −1 in standard form. Thus, the polar polygon has
(− 1

2 ,−
1
2 ,−

1
2 ) as a vertex, so it is not a lattice polytope.

Figure 10 A Fano polytope, which is not reflexive

From now on, we will focus on the special properties of reflexive polytopes.
How many equivalence classes of reflexive polytopes are there in dimension n?

In one dimension there is only one reflexive polytope, namely, the closed interval
[−1, 1]. (It follows that the one-dimensional reflexive polytope is its own polar poly-
tope.) We have seen the 16 equivalence classes of two-dimensional reflexive polygons.
The physicists, Maximilian Kreuzer and Harald Skarke, counted equivalence classes
of reflexive polytopes in dimensions three and four. Their results are summarized in
TABLE 1; a description of a representative polytope from each class may be found at
[6].

TABLE 1: Counting Reflexive Polytopes

Dimension Classes of Reflexive Polytopes

1 1

2 16

3 4,319

4 473,800,776

≥ 5 ??
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The physicists’ method for classifying polytopes was very computationally inten-
sive, so it is not effective in higher dimensions. In dimensions five and higher, the
number of equivalence classes of reflexive polytopes is an open problem.

The connection to string theory

String theory and mirror families Why were physicists classifying reflexive poly-
topes? As we noted in the introduction, the answer lies in a surprising prediction made
by string theory.

String theory is one candidate for what physicists call a Grand Unified Theory, or
GUT for short. A Grand Unified Theory would unite the theory of general relativity
with the theory of quantum physics. General relativity is an effective description for
the way our universe works on a very large scale, at the level of stars, galaxies, and
black holes. The theory of quantum physics, on the other hand, describes the way our
universe works on a very small scale, at the level of electrons, quarks, and neutrinos.
Attempts to combine the theories have failed: standard methods for “quantizing” phys-
ical theories don’t work when applied to general relativity, because they predict that
empty space should hold infinite energy.

String theory solves the infinite energy problem by re-defining what a fundamental
particle should look like. We often imagine electrons as point particles, that is, zero-
dimensional objects. According to string theory, we should treat the smallest compo-
nents of our universe as one-dimensional objects called strings. Strings can be open,
with two endpoints, or they can be closed loops. They can also vibrate with different
amounts of energy. The different vibration frequencies produce all the particles that
particle physicists observe: quarks, electrons, photons, and so forth.

We are accustomed to thinking of point particles as located somewhere in four di-
mensions of space and time. But string theory insists on something more. To be con-
sistent, string theory requires that strings extend beyond the familiar four dimensions,
into extra dimensions. The extra dimensions must have particular geometric shapes.
Mathematically, these shapes are known as Calabi-Yau manifolds.

To construct a string-theoretic model of the universe, we must choose a particular
Calabi-Yau manifold to represent the extra dimensions at a point in four-dimensional
space-time. Further, there are multiple ways to use this manifold. We will consider
two of these theories, the A-model and the B-model. These models have very similar
definitions: The only difference is whether one works with a particular variable or its
complex conjugate. However, the physical consequences predicted by the A-model
and the B-model for a particular geometric space are quite different.

When physicists began to explore the implications of string theory, they stumbled on
a surprising correspondence: Different sets of choices can yield the same observable
physics. As physicists studied the A-model and the B-model for many Calabi-Yau
manifolds, they discovered pairs of Calabi-Yau manifolds where the A-model for the
first manifold in the pair made the same predictions as the B-model for the second
manifold, and vice versa. They hypothesized that a mirror manifold should exist for
every Calabi-Yau manifold (or at least every Calabi-Yau manifold where the A-model
and B-model can be defined).

In more mathematical terms, the physicists’ hypothesis implies that Calabi-Yau
manifolds should arise in paired or mirror families. (Mathematicians prefer to work
with multi-parameter families of Calabi-Yau manifolds, rather than individual man-
ifolds, because moving from one point of four-dimensional space-time to a nearby
point might deform the shape of the attached Calabi-Yau manifold.) Since the geo-
metric properties of each family determine the same physical theories, we can use
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information about the geometry of one family to study the properties of the mirror
spaces.

What does this have to do with reflexive polytopes?
We can use reflexive polytopes to describe mirror families! To do so, we need a

recipe that starts with a reflexive polytope and that produces a geometric space. We
will proceed in two steps: First, we will use our polytope to build a family of polyno-
mials, and then we will use our polynomials to describe a family of geometric spaces.
(Technically, we will work with Laurent polynomials, which can involve negative pow-
ers.) We will obtain a mirror pair of families of geometric spaces corresponding to each
mirror pair of polytopes:

polytope ←→ polar polytopey y
Laurent polynomial←→ mirror Laurent polynomialy y

family of spaces ←→ mirror family

From polytopes to polynomials Let1 be a reflexive polytope. We want to construct
a family of polynomials using1. We start by defining the variables for our polynomial.
We do so by associating the variable zi to the i th standard basis vector in the lattice N :

(1, 0, . . . , 0)↔ z1

(0, 1, . . . , 0)↔ z2

...

(0, 0, . . . , 1)↔ zn

Think of the zi as complex variables: We will let ourselves substitute any nonzero
complex number for zi .

Next, for each lattice point in the polar polytope 1◦, we define a monomial, using
the following rule:

(m1, . . . ,mk)↔ zm1
1 zm2

2 · · · z
mk
k .

Finally, we multiply each monomial by a complex parameter α j , and add up the
monomials. This gives us a family of polynomials parameterized by the α j .

Let’s work out what this step looks like in the case of the one-dimensional reflex-
ive polytope 1 = [−1, 1]. Because we are working with a one-dimensional lattice N ,
there is only one standard basis vector, namely 1. Corresponding to this basis vec-
tor, we have one monomial, z1. Next we consider the polar polytope 1◦. The one-
dimensional reflexive polytope is its own polar dual, so 1◦ = [−1, 1]. Thus, 1◦ has
three lattice points, −1, 0, and 1. From each of these lattice points, we build a mono-
mial, as follows:

−1 7→ z−1
1

0 7→ 1

1 7→ z1

Finally, we multiply each monomial by a complex parameter and add the results.
We obtain the family of Laurent polynomials α1z−1

1 + α2 + α3z1, which depends on
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the three parameters α1, α2, and α3. Notice that, because z1 is raised to a negative
power in the first term, we cannot allow z1 to be zero.

Next, let’s look at the family of Laurent polynomials corresponding to the reflexive
triangle in FIGURE 2(a). We are now working with a two-dimensional polytope, so
we have two variables, z1 and z2. The polar polygon of our reflexive triangle is shown
in FIGURE 6. It contains ten lattice points (including the origin), so we will have ten
monomials.

(−1, 2) 7→ z−1
1 z2

2

(−1, 1) 7→ z−1
1 z2

(0, 1) 7→ z2

...

(2,−1) 7→ z2
1z−1

2

When we multiply each monomial by a complex parameter and add the results, we
obtain a family of Laurent polynomials of the form

α1z−1
1 z2

2 + α2z−1
1 z2 + α3z2 + α4z−1

1 + α5 + α6z1

+ α7z−1
1 z−1

2 + α8z−1
2 + α9z1z−1

2 + α10z2
1z−1

2 .

The mirror family of polynomials is obtained from the big reflexive triangle in FIG-
URE 6. We are still working in two dimensions, so we still need two variables; let’s call
these w1 and w2. The big triangle’s polar polygon is the triangle in FIGURE 2(a), since
the polar of the polar dual of a polygon is the original polygon. Thus, the mirror family
of polynomials will only have four terms, corresponding to the four lattice points of
the triangle in FIGURE 2(a). It is given by

β1w
−1
1 w−1

2 + β2w2 + β3 + β4w1.

From polynomials to spaces If we set a Laurent polynomial equal to zero, the re-
sulting solutions describe a geometric space. Let’s look at some examples using the
family α1z−1

1 + α2 + α3z1 obtained from the one-dimensional reflexive polytope. If
we set α1 = −1, α2 = 0, and α3 = 1, we obtain the polynomial −z−1

1 + z1 = 0. Solv-
ing, we find that z2

1 = 1, so the solutions are the pair of points 1 and −1. If we set
α1 = 1, α2 = 0, and α3 = 1, we obtain the polynomial z−1

1 + z1 = 0. In this case, we
find that z2

1 = −1, so the solutions are the pair of points i and −i . (Now we see why it
is important to work over the complex numbers!)

As we vary the parameters α1, α2, and α3, we will obtain all pairs of nonzero
points in the complex plane. Since the one-dimensional reflexive polytope is its own
polar dual, the mirror family will also correspond to pairs of nonzero points in the
complex plane. These are zero-dimensional geometric spaces inside a one-complex-
dimensional ambient space. To describe more interesting geometric spaces, we’ll have
to increase dimensions.

What are the spaces corresponding to the mirror pair of triangles in FIGURE 6?
Let’s set the Laurent polynomials corresponding to the smaller triangle equal to zero.

α1z−1
1 z2

2 + α2z−1
1 z2 + α3z2 + α4z−1

1 + α5 + α6z1

+ α7z−1
1 z−1

2 + α8z−1
2 + α9z1z−1

2 + α10z2
1z−1

2 = 0.
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We can multiply through by z1z2 without changing the nonzero solutions. We obtain

α1z3
2 + α2z2

2 + α3z1z2
2 + α4z2 + α5z1z2 + α6z2

1z2

+ α7 + α8z1 + α9z2
1 + α10z3

1 = 0.

Let’s re-order, so that terms of higher degree come first:

α10z3
1 + α1z3

2 + α6z2
1z2 + α3z1z2

2 + α9z2
1 + α2z2

2

+ α5z1z2 + α8z1 + α4z2 + α7 = 0.

As we vary our parameters αi , we will obtain all possible degree-three or cubic
polynomials in two complex variables. We cannot graph the solutions to these polyno-
mials, because they naturally live in two complex (or four real) dimensions. However,
we can graph the solutions that happen to be pairs of real numbers. These will trace
out a curve in the plane. The real solutions for two possible choices of the parameters
αi are shown in FIGURES 11 and 12.

–10 –5 5 10

–10

–5

5

10

Figure 11 A real cubic curve

–10 –5 5 10

–10

–5

5

10

Figure 12 Another cubic curve

The mirror family of spaces is given by solutions to

β1w
−1
1 w−1

2 + β2w2 + β3 + β4w1 = 0.

We can multiply through by w1w2 without changing the nonzero solutions:

β1 + β2w1w
2
2 + β3w1w2 + β4w

2
1w2 = 0.

Our mirror family of spaces also consists of solutions to cubic polynomials, but instead
of taking all possible cubic polynomials, we have a special subfamily.

Physicists are particularly interested in Calabi-Yau threefolds: These three complex-
dimensional (or six real-dimensional) spaces are candidates for the extra dimensions
of the universe. We can generate Calabi-Yau threefolds using reflexive polytopes. For
instance, one of the spaces in the family corresponding to the polytope with ver-
tices (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (−1,−1,−1,−1) can be de-
scribed by the polynomial

z5
1 + z5

2 + z5
3 + z5

4 + 1 = 0.
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Although we cannot graph this six-dimensional space, we can begin to understand its
complexity by drawing a two-dimensional slice in R3. One possible slice is shown in
FIGURE 13. You can generate and rotate slices of this space at the website [4].

Figure 13 Slice of a Calabi-Yau threefold

Physical, combinatorial, and geometrical dualities String theory inspired physi-
cists to study the geometric spaces known as Calabi-Yau manifolds. Using the duality
between pairs of reflexive polytopes, we have written a recipe for constructing mirror
families of these manifolds:

polytope ←→ polar polytopey y
Laurent polynomials←→ mirror Laurent polynomialsy y

spaces ←→ mirror spaces

The ingredients in our recipe are combinatorial data, such as the number of points
in a lattice polytope; the results of our recipe are paired geometric spaces. Combina-
torics not only allows us to cook up these spaces, it gives us a way to study them:
We can investigate geometric and topological properties of Calabi-Yau manifolds by
measuring the properties of the polytopes we started with.

The geometric properties of a Calabi-Yau manifold V are encoded in a list of non-
negative integers known as Hodge numbers. (Readers who have studied algebraic
topology will recognize the vector spaces H n(V,C), whose dimensions are given by
the Betti numbers; the Hodge numbers tell us how to break up these vector spaces into
smaller subspaces, using results from complex analysis.)

Two of the Hodge numbers, a(V ) and b(V ), count ways in which V can be de-
formed. In the physicists’ language, the Hodge number a(V ) counts the number of
A-model variations; mathematically, these are the number of independent ways to de-
form the notion of distance, or Kähler metric, on V . The Hodge number b(V ) counts
the number of B-model variations, that is, the ways to deform the complex structure
of V . (The complex structure tells us how to find local coordinate patches for V that
look like subspaces of Ck .)

Before physicists arrived on the scene, these two types of deformations were the
provinces of two different fields of mathematics: Differential geometers studied dis-
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tance and metrics, using the tools of differential equations, while algebraic geometers
studied complex structures, relying on the power of modern algebra. Mirror symme-
try predicts that, for Calabi-Yau manifolds, these deformations are intimately related.
If V and V ◦ are a mirror pair of Calabi-Yau manifolds, then their possible A-model
variations and B-model variations must be reversed. Physicists conjectured that, given
a Calabi-Yau manifold V , we should be able to find a mirror manifold V ◦ with the
appropriate Hodge numbers:

a(V ) = b(V ◦) and b(V ) = a(V ◦).

When physicists first framed this conjecture, very few examples of Calabi-Yau man-
ifolds were known. Reflexive polytopes provide both a rich source of example Calabi-
Yau manifolds, and a concrete mathematical construction of their mirrors. In the early
1990s, Victor Batyrev discovered and proved formulas for a(V ) and b(V ), which work
when V is obtained from a reflexive polytope 1 of dimension k ≥ 4:

a(V ) = `(1)− k − 1−
∑
0

`∗(0)+
∑
2

`∗(2)`∗(2̂)

b(V ) = `(1◦)− k − 1−
∑
0◦

`∗(0◦)+
∑
2◦

`∗(2◦)`∗(2̂◦).

Here `( ) is the number of lattice points in a polytope or face, and `∗( ) is the number of
lattice points in the interior of a polytope or face. (For a face, this means that `∗( ) does
not count lattice points on its boundary.) The 0 are codimension 1 faces of 1 (that is,
faces of dimension k − 1),2 are codimension 2 faces of2 (that is, faces of dimension
k − 2), and 2̂ is the face of1◦ dual to2; similarly, 0◦ are codimension 1 faces of1◦,
2◦ are codimension 2 faces of 2◦, and 2̂◦ is the face of 1 dual to 2◦. Notice that the
variations of complex structure are controlled by the number of lattice points in the
polar polytope 1◦. This is reasonable, because each lattice point in 1◦ corresponds to
a monomial in the equation for V , and in turn the equation for V determines a complex
structure.

Since (1◦)◦ = 1, it follows immediately that the Calabi-Yau manifolds V ◦ ob-
tained from 1◦ satisfy

a(V ) = b(V ◦) and b(V ) = a(V ◦) .

Thus, Batyrev was able to use reflexive polytopes to turn a conjecture motivated by
physics into a solid mathematical theorem.

In this article, we constructed Calabi-Yau manifolds as (k − 1)-dimensional spaces
described by a single equation in k complex variables. We can generalize this con-
struction to build (k − r)-dimensional Calabi-Yau manifolds described by a system of
r equations in k variables. The starting point is a reflexive polytope 1. To define the r
equations, we must divide the vertices of 1 into r disjoint subsets. The subsets of ver-
tices define polytopes of lower dimension, and we can guarantee that the corresponding
equations describe a Calabi-Yau manifold by placing conditions on these polytopes.
Lev Borisov introduced a method for constructing a mirror Calabi-Yau manifold, cor-
responding to r more lower-dimensional polytopes. Together, Batyrev and Borisov
proved a very general form of the equality

a(V ) = b(V ◦) and b(V ) = a(V ◦).

Their proof was indirect: They used the combinatorial data of the various polytopes to
define a polynomial, and then showed that the coefficients of this polynomial corre-
spond to Hodge numbers. (See [1] for an overview of this material.) Very recently, in
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[2], the first author and a collaborator found closed-form expressions for a and b for
Calabi-Yau threefolds described by two equations; these formulas directly generalize
Batyrev’s lattice point counting formulas from the single-equation case.

Reflexive polytopes remain the most bountiful source for examples of Calabi-Yau
manifolds, and the simple combinatorial duality between polar polytopes continues to
provide insight into geometrical dualities (mirror spaces) and even physical dualities
(mirror universes)!
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