Rationals, Irrationals, and Continued Fractions Online Berkeley Math Circle Intermediate II Ted Alper May 6, 2020 (in class Slides/handout) tmalper@stanford.edu

We can start by discussing some of the warmup questions. I do want to ask about this general question in particular: (warning: problem numbers may not be the same as in the pre-session handout!)

Problem 1 If I want to round $\sqrt{15} \approx 3.8729833462$), to the nearest tenth, how close can I come? Or the nearest hundredth? or to the nearest the nearest 1/N where N is any positive integer? Of course, if I round to the nearest ten-billionth, I can get all the decimal places I listed above. What might the advantages and disadvantages of that be?)

What ratio of integers M/N is closest to $\sqrt{15}$ if we insist that N be at most 10?

In general, do some values of N work better than others? On what basis should we decide which values of N work best?

What's a good Rational Approximation?

From the last problem, or otherwise... can we speculate on what might consitute a "good" rational approximation? And what questions about good rational approximations – however we define them – might we ask?

I don't think this one was even on the handout, but:

Problem 2 Suppose I want to plot points to draw a triangle that's as close to equilateral as possible, but need to use integer coordinates. Can I get an exact equilateral triangle? Why or why not? If not, how close can I come without having to use very large integers? (Maybe for simplicity we'll insist on a horizontal base).

Some other warmup problems

We can look at any of them if someone is interested, but I particularly want to touch on

Problem 3 How close to each other can two rational numbers with small denominators be? If a, b, c, d are positive integers with both $b \leq 1000$ and $d \leq 1000$ and $\frac{a}{b}$ and $\frac{c}{d}$ are *distinct* rational numbers (i.e. they aren't equal to each other), what is the closest they can be to each other? That is, what is the smallest possible value for

$$\left|\frac{a}{b} - \frac{c}{d}\right|?$$

Whatever your answer, give both an example to show that there really are two such rational numbers that close to each other and give a justification why there can't be two such rationals any closer to each other than that.

Also these two

Problem 4 Purple Comet (2013) For positive integers m and n the decimal representation for the fraction $\frac{m}{n}$ begins 0.711 followed by other digits. Find the least possible value for n.

Problem 5 (British Math Olympiad #3 1987B) Find a pair of integers r and s such that 0 < s < 200 and

$$\frac{45}{61} > \frac{r}{s} > \frac{59}{80}$$

and prove there is only one such pair r and s.

Some useful inequalities

Problem 6 (A sort of average of two fractions). If A, B, C, D are all positive, show that

$$\frac{A}{B} < \frac{A+C}{B+D} < \frac{C}{D}$$

We can give an intuitive argument or a rigorous one – or both!

Problem 7 Show that if

$$\frac{C}{D} - \frac{A}{B} = \frac{1}{BD}$$

(does that look familiar? and it's the same as CB - AD = 1), and E and F are positive integers for which

$$\frac{A}{B} < \frac{E}{F} < \frac{C}{D}$$

then $F \geq B + D$.

(A) How can we show this? (B) How often might this come up? (See BMO problem... also wait a little bit)

Dirichlet Approximation Theorem

Rational Approximations

Theorem . (Dirichlet Approximation Theorem) For any positive real number α , and any positive integer n, there are positive integers p and q with $q \leq n$ for which

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{qn} \le \frac{1}{q^2}$$

How can we prove it? What does it suggest?

What questions?

What is a continued fraction?

compact notation for simple continued fractions:

$$[a_0, a_1, a_2, a_3, a_4] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$$

The inductive definition for continued fractions is that $[a_0] = a_0$, $[a_0, a_1] = a_0 + \frac{1}{a_1}$, and

$$[a_0, a_1, \dots a_n, a_{n+1}] = [a_0, a_1, \dots, a_n + 1/a_{n+1}]$$
$$= [a_0, a_1, \dots, [a_n, a_{n+1}]]$$

You should verify this yourself – it really is the same thing as the big fraction! And nothing so far depends on the a_k terms being integers, this is all just algebra. Of course, we can't divide by 0, but otherwise, everything works just like you'd expect.

You could also verify algebraically that $[a_0, a_1, \ldots, a_n, a_{n+1}] = [a_0, [a_1, \ldots, a_n, a_{n+1}]]$. (This could be used to give a different inductive definition of continued fractions).

But how to compute them efficiently?

convergents of a continued fraction

It's helpful to define the **convergents** of a continued fraction

$$[a_0,a_1,\ldots,a_k]=rac{p_k}{q_k}$$

so for example

$$[a_0] = \frac{p_0}{q_0} = \frac{a_0}{1}$$

and

$$[a_0, a_1] = \frac{p_0}{q_0} = \frac{a_0 a_1 + 1}{a_1}$$

But what comes after that?

$$[a_0,a_1,\ldots,a_k]=rac{p_k}{q_k}$$

looking for patterns

Problem 8 Find the first six convergents for the continued fractions [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], and [2, 1, 2, 1, 2, 1]

n	a_n	fraction	p_n	q_n
0	1	1		
1	1	$1 + \frac{1}{1}$		
2	1	$1 + \frac{1}{1 + \frac{1}{1}}$		
3	1	$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$		
4	1			
5	1			

n	a_n	fraction	p_n	q_n
0	2	2		
1	1	$2 + \frac{1}{1}$		
2	2	$2 + \frac{1}{1 + \frac{1}{2}}$		
3	1	$2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1}}}$		
4	2			
5	1			

Do we need another?

Problem 9 Evaluate [1, 2, 3, 4, 5]. After you do that, evaluate [1, 2, 3, 4, 4] and [1, 2, 3, 4, 6].

n	a_n	fraction	p_n	$ q_n$
0	1	1		
1	2	$1 + \frac{1}{2}$		
2	3	$1 + \frac{1}{2 + \frac{1}{3}}$		
3	4	$1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}}$		
4	5			

Something's going on! Can we prove it algebraically?

We can define the convergents of the continued fraction by

$$egin{array}{rcl} p_0&=&a_0,&& ext{and}&q_0&=&1\ p_1&=&a_0a_1+1,&& ext{and}&q_1&=&a_1\ p_{n+1}&=&a_{n+1}p_n+p_{n-1},& ext{and}&q_{n+1}&=&a_{n+1}q_n+q_{n-1} \end{array}$$

(the last line is for $n \ge 1$, of course)

And we can then prove by induction on k that, for any finite continued fraction,

$$[a_0,a_1,\ldots,a_k]=rac{p_k}{q_k}$$

Next we'll show, for any k, $p_k q_{k-1} - p_{k-1} q_k = (-1)^{k-1}$ which means

$$\frac{p_k}{q_k} - \frac{p_{k-1}}{q_{k-1}} = \frac{(-1)^{k-1}}{q_k q_{k-1}}$$

(The proof is also by induction on k). While *none* of the proofs thus far require the a_k terms to be integers, What does this tell us when they *are* integers? (Go back to the warmup problem) successive convergents of a continued fraction are always as close to each other as rational numbers are allowed to be.

connection to Euclidean algorithm

Problem 10 Find the simple continued fractions expansion for 81/35 and 277/101 and use these to find integers m and n for which 81m + 35n = 1 and 277m + 101n = 1

Problem 11 Find the continued fraction expansions for
$$\frac{10!+1}{11!+1}$$
 and $\frac{3^7-1}{3^8-1}$.

Convergence of infinite simple continued fractions

- infinite simple continued fractions (with integer coefficients) always converge
- For any positive real number, there is a (almost unique) continued fraction (with integer coefficients) that converges to it

Problem 12 Evaluate the real number to which the following continued fraction converges:

 $[5, 2, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, \ldots]$

(I want an answer with a square root in it, not a decimal).

Every infinite continued fraction converges to an irrational number; Every irrational number has an infinite continued fraction expansion that converges to it.

Every periodic (repeating) continued fraction converges to an irrational root of a quadratic equation. Also every irrational root of a quadratic equation has a continued fraction expansion that is (eventually) periodic.

Problem 13 Find the continued fraction expansion for $\sqrt{20}$

how good a rational approximation is the convergent of a continued fraction?

Continued fractions and Pell's equation of form

$$x^2 - dy^2 = \pm 1$$

We can also apply continued fractions to Pell's equation $x^2 - dy^2 = 1$. (d is NOT a perfect square here) In particular, we can show that all solutions for x and y in positive integers come from the convergents of continued fractions for \sqrt{d} , where $x = p_n$ and $y = q_n$.

In fact, for every convergent p_n, q_n for \sqrt{d} , we must have $|p_n^2 - dq_n^2| \leq \lceil 2\sqrt{d} \rceil$, where $\lceil x \rceil$ stands for "the least integer greater than or equal to x".

And if you have any two solutions, $a^2 - b^2\sqrt{d} = u^2 - v^2\sqrt{d}$, then if you multiply out $(a + b\sqrt{d})(u + v\sqrt{d}) = x + y\sqrt{d}$, i.e. x = au + bvd, y = av + bu, you can verify that $x^2 - y^2 = 1$.

Problem 14 Find 2 solutions in positive integers for $x^2 - 6y^2 = 1$.

Upshot

Theorem. If α is any irrational number and p_n, q_n and p_{n+1}, q_{n+1} are consecutive convergents of the continued fraction approximation for α , then

(i) if n is even, ^{pn}/_{qn} < α < ^{pn+1}/_{qn+1}, if n is odd, ^{pn+1}/_{qn+1} < α < ^{pn}/_{qn}.
(ii) For all n, |α - ^{pn}/_{qn}| < ¹/_{(qn)²} (could even improve this somewhat!)
(iii) For any integer q < q_n and any integer p, |α - ^{pn}/_{qn}| < |α - ^p/_q|

This could be restated as: (i) the convergents alternate between being greater than and less than the number they are approximating, (ii) they are *very* good rational approximations and (iii) they are the best rational approximations of any rational approximations with the same or smaller denominator.

Some deeper results

Theorem. (Liouville, 1844) If f(x) is an nth degree polynomial with integer coefficients, and α is a real root of that polynomial, then there is a number $\kappa > 0$ such that for all rational numbers $\frac{p}{q} \neq \alpha$,

$$\left|\alpha - \frac{p}{q}\right| \ge \frac{\kappa}{q^n}$$

One consequence of this theorem: transcendental numbers exist! (of course, that's a consequence of Cantor's theorem as algebraic numbers are countable; but that came 30 years later (c. 1874) – Lindemann proved pi was transcendental in 1882.)

Theorem . (Thue-Siegel-Roth, 1909, 1921, 1955) If f(x) is an nth degree polynomial with integer coefficients, and α is a real root of that polynomial, then there is a number $\kappa > 0$ such that for all rational numbers $\frac{p}{q} \neq \alpha$,

$$\left|\alpha - \frac{p}{q}\right| \ge \frac{\kappa}{q^{2+\epsilon}}$$