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One of the most famous examples of an epidemic of an in-
fectious disease in a human population is the Great Plague
of London, which took place in 1665–1666. We know quite a
lot about the progression of the Great Plague because weekly
bills of mortality from that time have been retained. A photo-
graph of such a bill is shown in Figure 1. Note that the report
indicates that the number of deaths from plague (5533) was
more than 37 times the number of births (146) in the week in
question, and that wasn’t the worst week! (As Fred Brauer
notes in his article in this issue, an even worse plague occurred
in the 14th century, but no detailed records of that epidemic
are available.)

Figure 1: A photograph of a bill of mortality for the city of
London, England, for the week of 26 September to 3 October
1665.
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Putting together the weekly counts of plague deaths from
all the relevant mortality bills, we can obtain the epidemic
curve for the Great Plague, which I’ve plotted in the top
left panel of Figure 2. The characteristic exponential rise,
turnover and decline is precisely the pattern predicted by
the classic susceptible-infective-recovered (SIR) model of Ker-
mack and McKendrick [1] that I describe below (and Fred
Brauer also discusses in his article). While this encourages
us to think that mathematical modelling can help us un-
derstand epidemics, some detailed features of the epidemic
curve are not predicted by the simple SIR model. For ex-
ample, the model does not explain the jagged features in the
plotted curve (and there would be many more small ups and
downs if we had a record of daily rather than weekly deaths).
However, with some considerable mathematical effort, these
“fine details” can be accounted for by replacing the differ-
ential equations of Kermack and McKendrick with equations
that include stochastic (i.e., random) processes [2]. We can
then congratulate ourselves for our modelling success. . . until
we look at more data.

The bottom left panel of Figure 2 shows weekly mortal-
ity from plague in London over a period of 70 years. The
Great Plague is the rightmost (and highest) peak in the plot.
You can see that on a longer timescale, there was a com-
plex pattern of plague epidemics, including extinctions and
re-emergences. This cannot be explained by the basic SIR
model (even if we reformulate it using stochastic processes).
The trouble is likely that we have left out a key biological
fact: there is a reservoir of plague in rodents, so it can persist
for years, unnoticed by humans, and then re-emerge suddenly
and explosively. By including the rodents and aspects of spa-
tial spread in a mathematical model, it has recently been
possible to make sense of the pattern of 17th century plague
epidemics in London [3]. Nevertheless, some debate contin-
ues as to whether all those plagues were really caused by the
same pathogenic organism.

A less contentious example is given by epidemics of measles,
which are definitely caused by a well-known virus that infects
the respiratory tract in humans and is transmitted by air-
borne particles. Measles gives rise to characteristic red spots
that are easily identifiable by physicians who have seen many
cases, and parents are very likely to take their children to a
doctor when such spots are noticed. Consequently, the major-
ity of measles cases in developed countries end up in the office
of a doctor (who, in many countries, is required to report ob-
served measles cases to a central body). The result is that
the quality of reported measles case data is unusually good,
and it has therefore stimulated a lot of work in mathematical
modelling of epidemics.

An epidemic curve for measles in New York City in 1962
is shown in the top right panel of Figure 2. The period
shown is 17 months, exactly the same length of time shown
for the Great Plague of London in the top left panel. The
1962 measles epidemic in New York took off more slowly and
lasted longer then the Great Plague of 1665. Can mathemat-
ical models help us understand what might have caused these
differences?

Using the same notation as Fred Brauer uses in his article
in this issue, the basic SIR model is

dS

dt
= −βSI, (1)

dI

dt
= βSI − γI. (2)

Here, S and I denote the numbers of individuals that are sus-
ceptible and infectious, respectively. The derivatives dS/dt
and dI/dt denote the rates of change of S and I with
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Figure 2: Epidemic curves for plague in London (left panels)
and measles in New York City (right panels). For plague,
the (red) curves show the number of deaths reported each
week. For measles, the (blue) curves show the number of
cases reported each month. In the top panels, the small ticks
on the time axis occur at monthly intervals.

respect to time. The mean transmission rate is β and the
mean recovery rate is γ (so the mean infectious period is
1/γ). As Fred Brauer discusses, if the total population size
is N , and everyone is initially susceptible (S(0) = N), then a
newly introduced infected individual can be expected to in-
fect R0 = βN/γ individuals (the basic reproduction number
R0 is also discussed at length by Marjorie Wonham in her
article in this issue). You can find a discussion of the SIR
model together with the mathematical ideas it is based on in
some introductory calculus textbooks (see, for example, [4]).

As Fred Brauer notes, we cannot solve the SIR equations
and obtain formulae for the functions S(t) and I(t). Yet the
epidemic curves that we are trying to explain are essentially
given by I(t), so it is hard to proceed without it! Fortu-
nately, computers come to our rescue. Rather than seeking
an explicit formula for I(t), we can instead obtain a numer-
ical approximation of the solution. One simple approach is
Euler’s method, which we can implement as follows (using a
spreadsheet or any standard programming language).

The derivative dS/dt is defined as the ratio of the change
in S in a given short time interval dt, divided by that time
interval, in the limit that dt approaches zero. Dealing with
that limit is tricky, but at any time t we can approximate the
derivative by writing dS = S(t + dt) − S(t) and solving for
the number of susceptibles at a time t + dt in the future,

S(t + dt) = S(t) − βS(t)I(t)dt . (3)

Similarly, we can approximate the number of infectives at
time t + dt as

I(t + dt) = I(t) + βS(t)I(t)dt− γI(t)dt . (4)

Equations (3) and (4) together provide a scheme for approx-
imating solutions of the basic SIR model. To implement this
scheme on a computer, you need to decide on a suitable small
time interval dt. If you want to try this, I’d suggest taking dt
to be one tenth of a day. I should point out that I am being
extremely cavalier in suggesting the above method. Do try
this at home, but be forewarned that you can easily gener-
ate garbage using this simple approach if you’re not careful.
(To avoid potential confusion, include a line in your program

that checks that S(t) ≥ 0 and I(t) ≥ 0 at all times. Another
important check is to repeat your calculations using a much
smaller dt and make sure your results don’t change.)

In order for your computer to carry out the calculations
specified by equations (3) and (4), you need to tell it the
parameter values (β and γ, or R0, N and γ) and initial con-
ditions (S(0) and I(0)). For measles, estimates that are inde-
pendent of the case report data that we’re trying to explain
indicate that the mean infectious period is 1/γ ∼ 5 days and
the basic reproduction number is R0 ∼ 18 [5]. The popula-
tion of New York City in 1960 was N = 7 781 984. If we now
assume one infectious individual came to New York before the
epidemic of 1962 (I(0) = 1), and that everyone in the city was
susceptible (S(0) = N), then we have enough information to
let the computer calculate I(t). Doing so yields the epidemic
curve shown in the top panel of Figure 3, which does not look
much like the real data for the 1962 epidemic in New York.
So is there something wrong with our model?

No, but there is something very wrong with our initial con-
ditions. The bottom right panel of Figure 2 shows reported
measles cases in New York City for a 36 year period, the end
of which includes the 1962 epidemic. Evidently, measles epi-
demics had been occurring in New York for decades with no
sign of extinction of the virus. In late 1961, most of New
York’s population had already had measles and was already
immune, and the epidemic certainly didn’t start because one
infectious individual came to the city. The assumptions that
I(0) = 1 and S(0) = N are ridiculous. If, instead, we take
I(0) = 123 · (5/30) (the number of reported cases in Septem-
ber 1961 times the infectious period as a proportion of the
length of the month) and S(0) = 0.065N , then we obtain the
epidemic curve plotted in the middle panel of Figure 3, which
is much more like the observed epidemic curve of Figure 2
(top right panel). This is progress—we have a model that
can explain a single measles epidemic in New York City—but
the model cannot explain the recurrent epidemics observed in
the bottom right panel of Figure 2. This is not because we
still don’t have exactly the right parameter values and initial
conditions: no parameter values or initial conditions lead to
recurrent epidemics in this simple model. So, it would seem,
there must be some essential biological mechanism that we
have not included in our model. What might that be?

Figure 3: Epidemic curves for measles in New York City,
generated by the basic SIR model. The curves show the
number of infectives I(t) at time t. In the top two panels,
the small ticks on the time axis occur at monthly intervals.
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Let’s think about why a second epidemic cannot occur in
the model we’ve discussed so far. The characteristic turnover
and decline of an epidemic curve occurs because the pathogen
is running out of susceptible individuals to infect. To stimu-
late a second epidemic, there must be a source of susceptible
individuals. For measles, that source cannot be previously
infected people, because recovered individuals retain lifelong
immunity to the virus. Newborns typically acquire immunity
from their mothers, but this wanes after a few months. So
births can provide the source we’re looking for.

If we expand the SIR model to include B births per unit
time and a natural mortality rate µ (per capita), then our
equations become

dS

dt
= B − βSI − µS , (5)

dI

dt
= βSI − γI − µI . (6)

The timescale for substantial changes in birth rates (decades)
is generally much longer than a measles epidemic (a few
months), so we’ll assume that the population size is constant
(thus B = µN , so there is really only one new parameter
in the above equations; we can take it to be B). As before,
we can use Euler’s trick to convert the equations above into
a scheme that enables a computer to generate approximate
solutions. An example is shown in the bottom panel of Fig-
ure 3, where I have taken the birth rate to be B = 126 372
per year (the number of births in New York City in 1928, the
first year for which we have data). The rest of the parameters
and initial conditions are as in the middle panel of the figure.

Again we seem to be making progress. We are now getting
recurrent epidemics, but the oscillations in the numbers of
cases over time damp out, eventually reaching an equilibrium.
While the graph is just an approximate solution for a single
set of initial conditions, it can actually be proved that all
initial conditions with I(0) > 0 yield solutions that converge
onto this equilibrium. So we still don’t have a model that can
explain the real oscillations in measles incidence from 1928 to
1964, which showed no evidence of damping out. Back to the
drawing board?

Don’t give up. We’ve nearly cracked it. So far, we have
been assuming implicitly that the transmission rate β (or,
equivalently, the basic reproduction number R0) is simply a
constant and, in particular, that it does not change in time.
Let’s think about that assumption. The transmission rate
is really the product of the rate of contact among individu-
als and the probability that a susceptible individual who is
contacted by an infectious individual will become infected.
But the contact rate is not constant throughout the year. To
see that, consider the fact that in the absence of vaccination,
the average age at which a person is infected with measles
is about five years [5]; hence most susceptibles are children.
Children are in closer contact when school is in session, so the
transmission rate varies seasonally. A crude approximation of
this seasonality is to assume that β varies sinusoidally,

β(t) = β0(1 + α cos 2πt) . (7)

Here, β0 is the mean transmission rate, α is the amplitude of
seasonal variation and the time t is assumed to be measured
in years. If, as above, β is assumed to be a periodic function
(with a period of one year) then the SIR model is said to be
seasonally forced. We can still use Euler’s trick to solve the
equations approximately, and I encourage you to do that us-
ing a computer for various values of the seasonal amplitude α
(you must have 0 ≤ α ≤ 1: why?).

You might think that seasonal forcing is just a minor tweak
of the model, but in fact this forcing has an enormous im-
pact on the epidemic dynamics that the model predicts. If
you’ve taken Physics and studied the forced pendulum, then
you might already have some intuition for this. A pendulum
with some friction will exhibit damped oscillations and settle
down to an equilibrium. But if you tap the pendulum with a
hammer periodically then it will never settle down and it can
exhibit quite an exotic range of behaviours including chaotic
dynamics [6] (oscillations that look random). Similarly com-
plex dynamics can occur in the seasonally forced SIR model.

Most importantly, with seasonal forcing, the SIR model
displays undamped oscillations similar to the patterns seen
in the real measles case reports. But we are left with an-
other puzzle. If you look carefully at the New York City
measles reports in the bottom right panel of Figure 2 you’ll
see that before about 1945 the epidemics were fairly irregular,
whereas after 1945 they followed an almost perfect two-year
cycle. While the SIR model can generate both irregular dy-
namics and two-year cycles, this happens for different param-
eter values, not for a single solution of the equations. How
can we explain changes over time in the pattern of measles
epidemics?

Once again, the missing ingredient in the model is a chang-
ing parameter value. This time it is the birth rate B, which
is not really constant. Birth rates fluctuate seasonally, but to
such a small extent that this effect is negligible. What turns
out to be more important is the much slower changes that
occur in the average birth rate over decades. For example,
in New York City the birth rate was much lower during the
1930s (the “Great Depression”) than after 1945 (the “baby
boom”) and this difference accounts for the very different pat-
terns of measles epidemics in New York City during these two
time periods [7].

A little more analysis of the SIR model is very useful. It is
possible to prove that changes in the birth rate have exactly
the same effect on disease dynamics as changes of the same
relative magnitude in the transmission rate or the proportion
of the population that is vaccinated [7]. This equivalence
makes it possible to explain historical case report data for a
variety of infectious diseases in many different cities [8].

One thing that you may have picked up from this article is
that successful mathematical modelling of biological systems
tends to proceed in steps. We begin with the simplest sensi-
ble model and try to discover everything we can about it. If
the simplest model cannot explain the phenomenon we’re try-
ing to understand, then we add more biological detail to the
model, and it’s best to do this in steps because we are then
more likely to be able to determine which biological features
have the greatest impact on the behaviour of the model.

In the particular case of mathematical epidemiology, we are
lucky that medical and public health personnel have painstak-
ingly conducted surveillance of infectious diseases for cen-
turies. This has created an enormous wealth of valuable
data with which to test hypotheses about disease spread us-
ing mathematical models, making this a very exciting subject
for research in applied mathematics.
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Practical Further Reading Suggestions from
the Editors

The SIR Model for Spread of Disease web site at
http://www.math.duke.edu/education/ccp/materials/di
ffcalc/sir/contents.html includes Maple, Mathematica
and Matlab files.

A spreadsheet program that is easy to use is available from
http://ugrad.math.ubc.ca:8099/mathsheet/index.html.

Q: What is a mathematician’s pick when faced with the
choice between poutine and eternal bliss in the afterlife?

A: Poutine! Because nothing is better than eternal bliss in
the afterlife, and poutine is better than nothing.

Q: What is a topologist?
A: A person who cannot tell a doughnut from a coffee mug.

Q: Why did the mathematician have trouble computing
A−1A?

A: Because he was having an identity crisis.

Absurdity of zero: there is no such a thing as nothing.

Q: What is yellow, sour, and equivalent to the axiom of
choice?

A: Zorn’s lemon. . . .

c©Copyright 2004
Sidney Harris

Q: What is normed, complete, and yellow?
A: A Bananach space. . . .

c©Copyright 2004
Sidney Harris
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