
BMC - Intermediate II: Undergraduate Algebraic Topopology
("Alg Top")

 

200930 - Chris Overton (revised after class on 200101)  

Caution: these notes are not written to be fully understandable to you on their own, 
although they are filled in a bit from yesterday's class presentation. We tried to cover 
details in class, and you are encouraged to look up terms!

Alg Top is one of the major areas of math. You use it to map from topological 
spaces to objects you can study using modern algebra.

There are surprisingly few Algo Top texts aimed at undergrads - most are for graduate 
students, maybe allowing in some "advanced undergraduates."

Why? Because you first need to know some things about 1) Algebra, 2) Topology, and then 
you combine these in new ways.

We will skimp a bit on both of these in order to allow more time for Alg Top. Think of this 
as sort of a mathematical "taste test."

Our presentation is influenced by the following texts, but our two hours also need to 
introduce some prerequisites to these.  

Greenberg & Harper (quickest tour that focuses on todays topics)
Massey
Munkres (friendly introduction)
Hatcher (the current "standard" in graduate texts)
Bredon's Topology and Geometry (excellent content, but plenty of it not Alg 
Top.)

There is also a good modern introduction by Burt Totaro of UCLA in The Princeton 
Companion to Mathematics (This is just about the only of his dozens of papers I can't find 
online.)
This talk is inspired by my attempt to introduce knot theory (one Alg Top area) to BMC 
Advanced this Summer, but over four hours.

Today's topics



Today's topics  

In the forest of math, which trees do you climb? We'll start by looking at two of 
them: (modern) algebra and (point-set) topology.
Then we'll gain exposure to functors from topological to algebraic categories. 
In English: you'll learn about ways to map from 'sets' of topological spaces into 
'sets' of algebraic objects in ways that let you use algebra to study the spaces.
In particular, we'll see homology, homotopy, and cohomology, and we'll begin 
to make computations using these functors.

Preview of a proof of concept: the Brouwer fixed-point theorem  

Theorem: any continuous map  has a fixed point x (namely f(x)=x.)

[  is the 2-dimensional disk with unit radius.]

'Proof': this is not really a proof, since you first have to believe what is seen by homotopy. 
But assuming that:

Suppose that for all x, . Then you can follow the line from x to f(x) backwards to 
a point on , the boundary of  This gives you a map h from .  You also have 
the inclusion , and when you compose the two maps  [that is i, then h] 
you get the identity on . 
Here is where the magic of Alg Top comes in: apply homotopy to ends of  the maps i and 
h, and you pass to a map between  that must be zero, since it passes 
through , which is trivial.  But , and the identity map on  should pass 
to identity on  - a contradiction.

Again, this is just a preview. We will come back to explain this better.

See the following write-up for more: 
https://www.math3ma.com/blog/brouwers-fixed-point-theorem-proof

Building blocks for today: algebra

https://www.math3ma.com/blog/brouwers-fixed-point-theorem-proof


Building blocks for today: algebra  

Groups  

(Not fair: we didn't yet say what a group is!)
Basically, you can multiply elements associatively, there is a neutral element 1, and for 
each a there is an  such that .
Sometimes, we use a different operation like addition (with neutral element 0) instead of 
multiplication.)

Example: , the free group on two generators a and b, consists of all 
"words" in (positive and negative) powers of a and b.
Problem: what group do you get if you also insist that  ? 
[Answer: the abelian group on generators a and b. By multiplying the equation 
on the right by b and then by a, we found this is equivalent to ]

Rings  

Now you have two operations: 

Addition (forming a commutative group with neutral element 0)
Multiplication - may or may not have a neutral element. Even if there is, there 
may not be multiplicative inverses for every element (besides 0, which never 
has a multiplicative inverse.) If there are (and multiplication is commutative), 
it's called a field.
Examples: . [Respectively: whole numbers (integers), rationals, 
reals, complex numbers, and quarternions. Confusingly, the H stands for 
Hamilton, their discoverer. These are formed by adding new elements i, j, and 

 to  such that  and changing the order in 
multiplication can switch sign, as in: . So note that ring 
multiplication need not be commutative!]

Maps  

Acceptable maps "morphisms" between objects of a given type must preserve the structure 
of the objects. For groups, a map   between groups G and H must send  to 
, and for , 

For rings, morphisms must 'respect' both operations.

It is often important to understand the kernel and co-kernel of a map f, illustrated in the 
following exact sequence (namely the image at one map is exactly the kernel of the next):



[A kernel of a map is the set of things the map sends to 0. A cokernel is destination 
'divided by' image. In this case, the kernel of  is {0}, and its cokernel is .]

Buiding blocks for today: topology  

Spaces  

You can stretch spaces, but you can't puncture them or cut them.

When are two spaces considered equivalent? Two possibilities:

Only if homeomorphic, i.e. if there is a bijection (1-1 and onto, so an 
invertable map) between the spaces that is continuous in each 
direction
If homotopic, namely if you have maps going both ways whose 
compositions are homotopic to identities

Example: P and O (ignoring serifs!) are homotopic, but not homeomorphic. 
Why?

Maps  

Acceptable maps must respect the structure of the topological spaces considered. In most 
cases, one would want them to be continuous. But if one is working with a differentiable 
category, the maps would also have to be differentiable.

Building blocks for today: categories  

This is a slightly newer general language useful in many areas of math. Basically a 
category is sort of like a 'set' on steroids [illustrate with paradox of the set of sets that 
don't contain themselves as an element...does it contain itself?]

You also have 'sets' of maps or 'morphisms' between objects.

Examples: 

Topological spaces with continuous maps
Groups with homomorphisms



Functors  

Whenever you see a ("commutative") diagram like the following, good chance there's 
categories around:

A functor (like F or G here) is a 'map' between categories that also respects mapping 
between objects in the categories. For example, if f is a map between topological spaces X 
and Y, and F is the functor that maps into a category of groups, arrows between X and F(X) 
and between Y and F(Y) can be added to show the left half of the diagram is also 
commutative. This diagram also shows another functor G, and a way  of getting from F to 
G - called a 'natural transformation.' We will see exactly this between fundamental group 

 (part of homotopy) and dimension 1 homology.

...Now we get started for real with Alg Top!

Homotopy: (graded) groups of maps of spheres into a space X.  

 is the group of [homotopy classes of] maps of .

[Side condition: the maps are 'based' - you think of X each  of having a base point, such 
that all maps map base point to base point. In particular that only makes sense if X is 
connected - if it is not, you could compute homotopy for each component of X.]

Problem: why is this a group? [Discussed in class - especially for .]

Homology: (graded) groups formed e.g. by "chains" of simplexes of
which X is composed

 

There are a couple ways to set up homology, ranging from the most concrete (build X out 
of simplexes) to definitions that are more abstract but more convenient.

Suppose X is itself a 'simplicial complex', namely composed of points, line segments, 
triangles, tetrahedra, hyper-tetrahedra, ... (respectively in dimensions 0,1, 2, 3, 4). Then 
for any n, you can take 'chains' of these, which are sums of integer multiples of n-
simplexes, forming the ring .



Then there is a boundary operator . It satisfies , so 
that boundary times boundary is zero: . (Note composition goes from right 
to left!)

Therefore, for each n, you can form the quotient homology 

A good choice for the boundary operator is the natural geometric boundary as calculated 
for each simplex. For example,  of a 2-simplex (of a triangle) is a set of three 1-simplexes 
(line segments.) 
Careful: you have to pay attention to sign!

Problem: show that  in this case.
[Hint: the argument varies depending on n! We worked this out in class.]

In 'singular' homology you don't think of X as itself being made of simplexes, but rather 
you consider chains as composed of images of 'standard' n-dimensional hyper-tetrahedra 
mapped into X. This seems like a huge space, but when you take kernel 'divided' out by 
image, under reasonable circumstances, you get the same result. Advantages: this 
definition provides useful topological intuition, and you don't have to build X up as a 
simplicial complex.

If X is an n-dimensional manifold, you can think of k-dimensional submanifolds.

[Instead of integer multiples (our default!), you could use another 'ring of coefficients' like 
 or even ]

Which of these seems easier? Which seems more useful?  

[Students were reluctant to offer opinions! Briefly, homotopy seems like it is easier to 
define, but it turns out to be much harder to compute. Where it is available, homotopy 
might offer deeper topological insight, but more results are avalable from homology (and 
especially cohomology, as we see below.)]

Examples  

Let's illustrate both for the space  (viewed as built out of three 1-simplexes, namely line 
segments.)
[We explained how both  and  are , respectively counting the number of times a 
loop goes around the circle, and the multiple of a chain going around once (whose 
boundary we showed is zero.)]



Problem: what are fundamental group  and 1-dimensional homology  of '*' namely 
the space consisting only of the base point? What about the space ? Can you 
generalize?
[Answer: these are 'contractable' spaces - namely they are homotopic to a single point. 
They have trivial homology (just the ring of coefficients in dimension 0) and trivial 
homotopy.]

Problem: what are  and  of , namely two circles joined at the common base 
point.
[Answer:  (the free group on two generators), and  (the free 
abelian group on two generators - much smaller than F(a, b)!)]

Problem: what are  and  of , the 2-dimensional torus (viewed as lying flat with 
vertical axis of symmetry)?
[In class, we showed (with some hand waving) they are both , generated by two 
loops (respectively chains): 1) going around the torus from outside to inside and back, and 
2) going around the torus in a horizontal circle.]
[In particular, to compute , we showed we can think of the torus as the 'quotient space' 
of a square, where top and bottom edges are glued together, and the same for left and 
right edges. Then the loop going around the insides of the edges (counterclockwise from 
lower left) is contractable, and thus = 1 in the fundamental group. Algebraically,  

 exactly a commutator relation. Again, an exponent of -1 indicates a 
backwards path]

The past three examples all illustrate the following pattern:

Theorem  / [commutator ], namely,  is the 'abelianization' 
of 

It takes some work to prove this (which we didn't do in class.) Here are some students 
having trouble with this, and referring to two texts I mention above:
https://math.stackexchange.com/questions/1949774/the-first-homology-group-is-the-ab
elianization-of-the-fundamental-group

--> With our new experience, we can go back and take another look at the  Brouwer fixed-
point theorem! Note that we could prove it using either homology or homotopy.

https://math.stackexchange.com/questions/1949774/the-first-homology-group-is-the-abelianization-of-the-fundamental-group


Higher-dimensional homotopy and homology...  

Theorem:  is commutative for .
[Proof: suggested in class. See a 'proof without words' in Totaro's article.]

One cool thing you can do with homology: the long exact sequence  

Relative homology: just 'zero out' chains within a subspace A of X  

This gives you short exact sequences 

To make this less cluttered, we'll write this as 

Then you can do 'diagram chasing' on

to get the following long exact sequence:

Knowing this is exact at each step can be a very useful help in computation!

One cool thing you can do with homotopy: spectral sequences



One cool thing you can do with homotopy: spectral sequences  

Since homotopy can be so hard to compute, complicated tools like this (which we didn't 
say much about) are often needed to make progress!

Cohomology: the third major functor: (graded) groups  formed by
"co-chains" of simplexes for X

 

Note that n here is a superscript, not like the subscript in homology and homotopy!

Why? It's a contravariant functor - it makes arrows go 'backwards': a map f from a to b 
results in a map from cohomology of b to cohomology of a:

There are a couple different ways to do define cohomology: the earlier lower-level ways 
are just (acceptable) maps from chains into your ring of coefficients.

Alternately, for certain classes of spaces (e.g. reasonable n-dimensional manifolds), 
cohomology classes (elements) in dimension n-i correspond to homology classes in 
dimension i. This is called duality, and is another major trick facilitating calculation and 
interpretation.



Why would anyone go to the trouble of using this contorted, contravariant functor? 
Because it allows graded multiplication: For , there is a "cap 
product" . This, and a couple of other tricks (like special operations 
between different cohomology dimensions), often make group cohomology easier to 
calculate for very complicated spaces!

Conclusion  

You have now gained experience with two very important areas of math (modern algebra 
and elementary topology) that you will need very often in widely different contexts.

One very important context is when these two subjects come together in Alg Top to 
illuminate each other. You don't have to wait until math grad school to learn more!
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