GRAPH THEORY AND EPIDEMICS Berkeley Math Circle

15 APRIL, 2020

ABOUT ME

- Mark Penney
- Perimeter Institute / UWaterloo
- Visitor at MSRI

ABOUT ME

- From Newfoundland, Canada
- Its nice enough

ABOUT ME

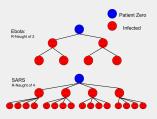
- From Newfoundland, Canada
- Its nice enough
- ... Except in the winter

MATHEMATICS OF INFECTIOUS DISEASE

- I don't study infectious diseases
 - Topology (knots, surfaces,...) applied to theoretical physics (particle physics, quantum computing)
- Wanted to understand how we model epidemics
 - Personal reasons: Knowledge is power
 - Maybe contribute to COVID-19 research

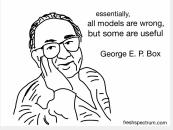
COVID-19: FLATTENING THE CURVE

FUNDAMENTAL NUMBER: REPRODUCTIVE RATE



- R_o = average number of new infections
- Phase transition at $R_0 = 1$:
 - $R_0 < 1$: disease dies off
 - $R_{o} > 1$: epidemic outbreak
- Determines the trajectory of outbreak
- Flattening the curve \Leftrightarrow reducing R_0

How do we determine R_0 ?

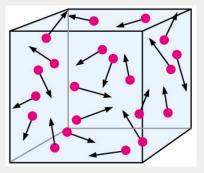


- Depends on assumptions of model
- Simplest model: $R_0 = \mu \cdot T$
 - $\mu = average number of contacts$
 - T = probability of spread
- To reduce *R*_o:
 - ► Reduce *µ*: social distancing
 - Reduce T: Handwashing, masks

What are the assumptions of this model?

Main assumption: 'Homogeneous mixing'. People interact with each other at random. Does not take into account social structure!

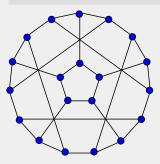
CONTACT NETWORKS



People are not like molecules of a gas! More realistic: Understand the network or graph describing contacts

Recall: Graphs

A graph is a collection of vertices joined by edges



- Coronaviruses spread by close proximity interactions (CPIs)
- Build contact network for group of people:
 - Vertices: People in group
 - Edges: connect people having CPIs

What sort of social structure leads to the following contact networks?

- 5 people all sharing CPIs
 - Household, group of friends, small sports team
- 6 people having CPI with 1 other
 - Doctor visiting patients, tutor
- 7 people in 2 clusters
 - The households of 2 friends

Recall: Degree

The degree of a vertex in the number of edges connected to it

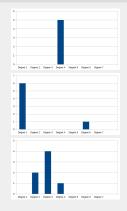
- All vertices have degree 4
 - Every family member is in contact with the remaining 4

- Central vertex has degree 6, remainder degree 1
 - Doctor as 6 contacts, patients have 1
- Within each household, each family member is in contact with the remainder. Friends have higher degree

DEGREE DISTRIBUTION

Takeaway message

Social structures lead to varying degrees in contact network Helpful to plot number of vertices having each degree



Definition

The degree distribution of a graph is

$$d \mapsto p_d = rac{\# \text{ vertices of degree } d}{\# \text{ vertices}}$$

Probability that randomly chosen vertex has degree *d* Obtained from previous graphs by dividing by *#* vertices

Exercise

Compute the average degree of our 3 examples. Can you find a simple, general formula?

Recall: Average of probability distribution

Given probability distribution p_d , the average is:

$$\mu = \langle d \rangle = \mathbf{0} \cdot p_{\mathbf{0}} + \mathbf{1} \cdot p_{\mathbf{1}} + \mathbf{2} \cdot p_{\mathbf{2}} + \ldots = \sum_{d} d \cdot p_{d}$$

The average degrees are:

- 'Household' network: $\mu = 4$
- 'Doctor' network: $\mu = 1 \cdot \frac{6}{7} + 6 \cdot \frac{1}{7} = \frac{12}{7} = 1.7...$
- 'Friends' network: $\mu = 2 \cdot \frac{2}{7} + 3 \cdot \frac{4}{7} + 4 \cdot \frac{1}{7} = \frac{20}{7} = 2.9...$

AVERAGE DEGREE FORMULA

Proposition

The average degree of a graph is

$$\mu = \frac{\mathbf{2} \cdot \# \text{ edges}}{\# \text{ vertices}}$$

Proof

$$\mu = \frac{\sum_{d} d \cdot \# \text{ vertices of degree d}}{\# \text{ vertices}}$$
$$\sum_{d} d \cdot \# \text{ vertices of degree k} = \sum_{\text{vertices } v} \# \text{ edges meeting } v$$

This sum counts each edge twice

Regular graph

A graph is called *d*-regular if each vertex has degree *d*.

Homogeneous mixing

Assumption lead to $R_{\rm o} = \mu \cdot T$. Assumes that contact network is *d*-regular with $d \approx \mu$

CONSTRUCTING REGULAR GRAPHS

Can you make a 3-regular graph with 5 vertices? 7?

• Must $d \cdot \#$ vertices is even!

Question

Can you make a 4-regular graph with 6 vertices?

CONSTRUCTING REGULAR GRAPHS

Can you make a 3-regular graph with 5 vertices? 7?

• Must $d \cdot \#$ vertices is even!

Question

Can you make a 4-regular graph with 6 vertices?

- Arrange vertices in circle
- Join each vertex with 2 nearest on each side

CONSTRUCTING REGULAR GRAPHS

Can you make a 3-regular graph with 5 vertices? 7?

• Must $d \cdot \#$ vertices is even!

Question

Can you make a 4-regular graph with 6 vertices?

- Arrange vertices in circle
- Join each vertex with 2 nearest on each side

Question

Can you make a 5-regular graph with 8 vertices?

- Arrange vertices in circle
- Join each vertex with 2 nearest on each side

Question

Can you make a 5-regular graph with 8 vertices?

- Arrange vertices in circle
- Join each vertex with 2 nearest on each side
- Join opposite vertices

Observation

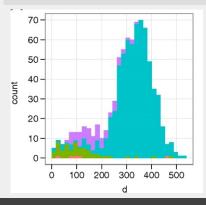
Can use these constructions to make *d*-regular graph with *V* vertices, assuming $d \cdot V$ is even and *V* is large enough

REALISTIC DEGREE DISTRIBUTIONS

- Simplest model assumes regular contact network
- Saw that even simple contact networks are far from regular

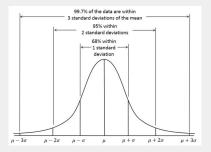
Question

What are the degree distributions of realistic contact networks?



- Number of daily CPIs in US high school
- Blue = students, pink = teacher, green = staff
- What other statistical ideas might be useful here?

STANDARD DEVIATION



Standard deviation σ measure of 'width' of distribution

$$\sigma^2 = (0-\mu)^2 p_0 + (1-\mu)^2 p_1 + (2-\mu)^2 p_2 + \dots = \sum_d (d-\mu)^2 p_d$$

•
$$\sigma^2 = \text{Average of } (\text{distance from } \mu)^2$$

COMPUTING STANDARD DEVIATION

Formula

$$\sigma^{2} = (0 - \mu)^{2} p_{0} + (1 - \mu)^{2} p_{1} + (2 - \mu)^{2} p_{2} + \dots = \sum_{d} (d - \mu)^{2} p_{d}$$

$$\mu = 4$$

• $\sigma^2 = (4-4)^2 \frac{5}{5} = 0$

$$\sigma^{2} = \left(1 - \frac{12}{7}\right)^{2} \frac{1}{7} + \left(6 - \frac{12}{7}\right)^{2} \frac{1}{7} = \frac{150}{49} = 3.06...$$

$$\mu = \frac{20}{7}$$

$$\sigma^{2} = \left(2 - \frac{20}{7}\right)^{2} \frac{2}{7} + \left(3 - \frac{20}{7}\right)^{2} \frac{4}{7} + \left(4 - \frac{20}{7}\right)^{2} \frac{1}{7} = \frac{20}{49} = 0.408...$$

•
$$\mu = \frac{12}{7}$$

• $\sigma^2 = \left(1 - \frac{12}{7}\right)^2 \frac{6}{7} + \left(6 - \frac{12}{7}\right)^2 \frac{1}{7} = \frac{150}{49} = 3.06...$

21

Reproductive rate v2

Better model for R_o

Correction factor accounting for width

$$R_{\rm O} = T\mu \left(1 + \frac{\sigma^2}{\mu^2}\right)$$

• 'Household' network: $\frac{\sigma^2}{\mu^2} = \frac{0}{4^2} = 0$

• For regular graphs $\sigma = o$ so simple = better model

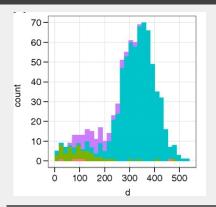
• 'Doctor' network: $\frac{\sigma^2}{\mu^2} = \left(\frac{150}{49}\right)^2 \left(\frac{7}{12}\right)^2 = \frac{625}{196} = 3.19...$

Better model gives R_o 4 times larger!

• 'Friends' network: $\frac{\sigma^2}{\mu^2} = \left(\frac{20}{49}\right)^2 \left(\frac{7}{20}\right)^2 = \frac{1}{49} = 0.02...$

Better model is only slightly larger than simple model

REPRODUCTIVE RATE V2



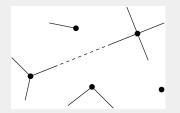
•
$$\frac{\sigma^2}{\mu^2} = 0.118$$

Better model for R_o is almost 12% higher

Takeaway messages

- Since $\frac{\sigma^2}{u^2} \ge 0$, simple $R_0 \le$ better R_0
- Wider degree distribution ⇒ faster spread of disease

HOW POPULAR ARE YOUR FRIENDS?



How to make a random graph

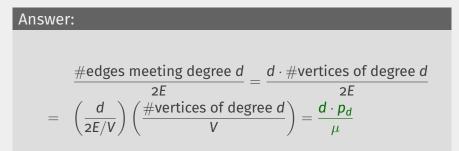
- 1. Create vertices with chosen degrees
- 2. Connect the edges at random

Theorem

On average, a contact has $\mu\left(1+\frac{\sigma^2}{\mu^2}\right)$ contacts \Rightarrow since $\geq \mu$, your friends have more friends than you!

Question:

What is the probability that an edge meets a vertex of degree d?



The average degree of a vertex meeting a random edge is

$$\sum_{d} d \cdot \left(\frac{d \cdot p_{d}}{\mu}\right) = \frac{1}{\mu} \sum_{d} d^{2} \cdot p_{d}$$

28

Proof

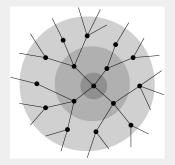
Observe that,

$$\sigma^2 = \sum_d (d-\mu)^2 p_d = \sum_d d^2 \cdot p_d - 2\mu \sum_d d \cdot p_d + \mu^2 \sum_d p_d$$
$$= \sum_d d^2 \cdot p_d - \mu^2$$

Therefore,

$$\mu\left(1+\frac{\sigma^2}{\mu^2}\right) = \frac{\mu^2+\sigma^2}{\mu} = \frac{1}{\mu}\sum_{d} d^2 \cdot p_{d}$$

FINAL WORDS



- Reproductive rate R_o determines spread of disease
- Good model: $R_0 = T\left[\mu\left(1 + \frac{\sigma^2}{\mu^2}\right)\right]$
 - Second factor is average degree of a neighbor
- To flatten the curve need to also reduce 'width' of contact network
 - e.g., 'super-spreaders', large gatherings, schools

Thank you very much for your attention!