
Quaternions and Sums of Squares Worksheet

Define the “vector space of Quaternions”

H := {a+ bi + cj + dk | a, b, c, d ∈ R}
(R is of course the real numbers). We view the real number line as a subset of H as follows:
R ⊂ H is the set of “scalar quaternions”, which is the sub-vector space consisting of vectors
a + 0i + 0j + 0j for a ∈ R. Such quaternions will be denoted simply by a (so 3 denotes
3 + 0i + 0j + 0k, similarly to how 3 ∈ C denotes 3 + 0 · i). Quaternions can be added (as
vectors) and we define a distributive multiplication on H. We define multiplication by a ∈ R
(on either the left or the right) to be scalar multiplication: so a · h = h · a = ah for a ∈ R
and a vector h ∈ H. Multiplication is defined on-scalar basis vectors as follows:

i2 = −1 j2 = −1 k2 = −1

ij = k jk = i ki = j

ji = −k kj = −i ik = −j.
(mnemonic: all of i, j,k square to −1 and multiplying two basis vectors “in order” gives the
third, “out of order” gives minus the third).

FACT. Multiplication of quaternions is associative. (You can take this on faith). To check it
it would be enough to check that (αβ)γ = α(βγ) for α, β, γ basis vectors. You can convince
yourself that there is nothing to check when α, β, or γ = 1. The cases that need to be checked
(up to symmetry provided by rotating the i, j, k around cyclically) are iij, ijj, iji, ijk, and kji.

It follows that the quaternions are a non-commutative ring: you can add and multiply
them like matrices1

1in fact there is a way to write 2× 2 complex matrices 1 =

(
1 0
0 1

)
, i =

(
0 1
−1 0

)
, and so on, in such a

way that their products satisfy the relations above. These matrices are called “Pauli matrices” (they come
from physics) and will not be used here.
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1. Say h = a + bi + cj + dk and h′ = a′ + b′i + c′j + d′k. Write down a formula for h · h′
(using distributivity).

2. Define h := a − bi − cj − dk. Show that hh′ = h
′ · h (it’s enough to check this for basis

vectors 1, i, j,k).

3. For h as above a quaternion, define ||h|| = a2 + b2 + c2 + d2.2. Show that h · h = ||h||.
Deduce that ||h · h′|| = ||h|| · ||h′|| (careful about order of multiplication.)

4. If h 6= 0, define h−1 := h
||h|| . Prove that h · h−1 = 1. Deduce (by swapping h ad h−1, for

example) that h−1 ·h = 1 as well. (I.e. h−1 acts as precisely the inverse of h.) The fact that
every nonzero quaternion has an inverse makes H a “division ring” or a “skew field”.

2||h|| is called the “norm” of the quaternion h: the double lines are to distinguish it from the “absolute

value”, which is |h| =
√
||h||
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Now we define Hint, the “set of integral quaternions” to be the set a + bi + cj + dk, for
a, b, c, d ∈ Z (integers). We say that an element h′ ∈ Hint is left divisible by h ∈ Hint (write
this as h | h′) if h′ = h · q, for some q ∈ Hint. Notice that h′ is left divisible by h if and only

if h
′

is right divisible by h.

For most of the rest of this worksheet, we will be proving the following result.

Factorization Theorem. Fix a prime p. Suppose h ∈ Hint is an integral quaternion
such that ||h|| is divisible by p but h itself is not divisible by p (i.e. one of a, b, c, d has
remainder 6= 0 when divided by p). Then h is left divisible by some element τ ∈ Hint such
that ||τ || = p.

We first treat the case p = 2 separately, then proceed by induction on p.

5. Prove that if ||h|| is even then h is left divisible by one of 1 + i, 1 + j, 1 + k (which have
norm 2). This proves the factorization theorem for p = 2.

6. Now assume p is an odd prime, and h ∈ Hint an integer quaternion. Prove that there exist
q, r ∈ Hint such that qp + r = h, and such that ||r|| < p2. Hint: every number is equivalent
modulo p to one of −p−1

2
, . . . , p−1

2
.

7. Now assume p is an odd prime, and we have proven the factorization theorem for all ` < p.
Assume that r ∈ Hint is an integer quaternion such that p divides ||r||. Suppose further that
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||r|| < p2. Write ||r|| = p · e (for e ∈ Z an integer). The induction hypothesis then implies
that the factorization theorem holds for primes ` which divide e. Applying it to r, for each
such `, either ` | r or r = λ1 · r1. By inductively applying this procedure, deduce that (if `
does not divide r) we have r = λt · rt, for some λt ∈ Hint and rt ∈ Hint satisfying ||rt|| = p.
Deduce (by conjugating once) that r is left divisible by rt, proving the factorization theorem.

8. Show that there exists h = a+bi+cj+dk ∈ Hint such that a, b, c, d are not all divisible by
p but ||h|| is divisible by p (hint: take a to be any nonzero remainder mod p. Then we have
seen that −a is a sum of two squares mod p). Deduce that there is a quaternion h ∈ Hint

with norm ||h|| = p.

9. Conclude that every positive integer is the sum of four squares.

10. Bonus problems: (a) Prove that every Gaussian number g ∈ G (so g = a + bi for
a, b integers) has a decomposition as a product of Gaussian primes g = α1 · · · · · αn. This
decomposition is unique up to order and up modifying each αi by a “unit” in G, i.e. one of
U = {1, i,−1,−i}. Up to multiplication by U = {1, i,−1,−i}, there is exactly one Gaussian
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prime of norm 2, two Gaussian primes of norm p for primes p ≡ 1 mod 4 and one Gaussian
prime of norm p2 for primes p ≡ 3 mod 4 (and there are no other Gaussian primes).

(b) Deduce when a positive number n is a sum of squares (based on the prime factorization
of n). Can you come up with a formula for the number of ways n can be written as a2 + b2

(assuming sign and order matters)? Hint: first find the number of Gaussian numbers of
norm n up to multiplication by U .

(c) let An be the number of ways to express n as a sum a2 + b2 of two squares (here
order matters and a, b can be positive or negative). Let f(s) =

∑∞
n=1An/n

s (this is called a
“Dirichlet series”). Show that

g(s) = 4
∏
p

fp(s),

where

fp(s) :=


1/(1− 2−s), p = 2

1/(1− p−2s), p ≡ 3 mod 4

1/(1− p−s)2, p ≡ 1 mod 4

.

Here the product runs over all primes.


