Berkeley Math Circle (Advanced): The p-adic Numbers

- 1. Determine the 3-adic absolute value of the following fractions
 - (a) $\frac{49}{12}$
 - (b) $\frac{101}{52}$
 - (c) $\frac{81}{17}$

Solutions:

2. Why does the sequence $\{7,7^2,7^3,7^4,\ldots\}$ tend to zero with respect to the 7-adic absolute value?

Solution:

- 3. (a) Add the following 5-adic numbers: $0.24242424..._5$ and $0.321321321321..._5$.
 - (b) Subtract the following 3-adic numbers: $1.0202020202..._3$ and $2.101010101..._3$.
 - (c) Multiply the following 2-adic numbers: $0.10101010..._2$ and $1.11111111..._2$.

Solutions:

4. Express $\frac{3}{5}$ as a 2-adic decimal. You need only compute the first 4 terms. Solutions:

5. Is there a solution to $x^2 - 3 = 0$ in \mathbb{Q}_3 ? Hint: consider the potential absolute value of a solution. Hence \mathbb{Q}_3 does not admit a square root of 3. Does 5 admit a square root in \mathbb{Q}_3 ?

Solutions:

6. Prove that if a, b, c are all in \mathbb{Q}_p , then at least two of the numbers $\{|a-b|_p, |c-a|_p, |b-c|_p\}$ must be equal. This tells us that in \mathbb{Q}_p all triangles are isosceles. Solutions: Hensel's Lemma states the following:

Let p be a prime and f(x) a polynomial with integer coefficients. Then if a is an integer such that $f(a) = 0 \mod(p)$ and $f'(a) \neq 0 \mod(p)$, there is a unique p-adic number b in \mathbb{Z}_p such that f(b) = 0 and $a = b \mod(p)$.

7. Using Hensel's Lemma, show that 7 admits a square root in \mathbb{Q}_3 Solutions:

8. Show that \mathbb{Q}_5 admits a square root of -1, but \mathbb{Q}_3 does not.