
Fractals and dynamical systems
Berkeley Math Circle, October 23, 2019

Jacob Shapiro

1. What is a Fractal?

Somewhat disappointingly, there is no commonly agreed-upon mathematical definition of the term “frac-
tal”. However, if X possesses the following somewhat imprecise properties, we typically regard A as a
fractal:

• A is a (usually bounded) subset of Euclidean space Rn or the complex plane C.

• A has some kind of “rich” or complicated structure. One example of this is A looking the same at
all scales. Roughly speaking, if you were to use a microscope to “zoom in” on A more and more,
you would see the same patterns as before. Sometimes this property is called self-similarity. As
non-examples, squares and spheres are usually not usually considered to be self-similar, because as
you zoom in on a small patch of a square or sphere, you just see a line or plane.

Interestingly, many objects/phenomena in nature are fractal-like. So, in a way, fractals describe nature
more accurately than the classical geometric shapes we are used to.

Main takeaway from this lecture: While fractals themselves are very complex, we can use simple
mathematical concepts and formulae to generate and understand them.

Three examples of fractals are the Cantor set, the Sierpinksi Triangle, and the Mandelbrot Set.

2. Notation

We use X to denote a set of objects. If an object x belongs to X, we express that in mathematical
notation by x ∈ X.

For example, X may be the set of real numbers R or complex numbers C. Then 2 ∈ R, π ∈ R, and
3 + iπ ∈ C.

Or, X could be some set of higher dimensional objects, like row or column vectors in R2. Further still,
the objects of X may be sets themselves—X could be the set of all closed and bounded subsets of R2.

A function f : X → X is simply a “rule” or formula that assigns to each point x ∈ X another the point
y = f(x) ∈ X. The domain of f is the set of all values f can take as an input, in this case X. The range
or image of f , denoted by Ran f , is the set of all output values that f assumes:

Ran f ..= {y ∈ X : there exists x ∈ X such that f(x) = y}.
For example, if f(x) = sinx : R→ R, then the range of sinx is the closed interval [−1, 1].

3. The Cantor set

The first fractal we construct is the classical Cantor set C, which is a subset of the closed interval [0, 1].
We obtain C by successive deletion of middle third open intervals:

I0 = {[0, 1]},

I1 =

{[
0,

1

3

]
,

[
2

3
, 1

]}
,

I2 =

{[
0,

1

9

]
,

[
2

9
,

1

3

]
,

[
2

3
,

7

9

]
,

[
8

9
, 1

]}
,

...

We define the Cantor set to be the intersection of all these sets:

C ..=

∞⋂
n=0

In = {x ∈ [0, 1] : x ∈ In for all n}.

Exercise 3.1. Identify two points of [0, 1] which are not in the Cantor set. What are some whole subintervals
of [0, 1] that are not in C?

Exercise 3.2. Identify at least five points which are in the Cantor set.
1

2

Exercise 3.3. Determine the length of the Cantor set. Or, put another way, does the Cantor set contain any
interval of positive length? Hint : How many intervals make up In and what is the length of each interval?

4. Contraction mappings

Recall that we represent points of the Euclidean space Rn by n-tuples (a1, a2, . . . an), where each ai ∈ R.
The distance between two points of Rn,

a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn),

is given by

|a− b| ..=
√

(a1 − b1)2 + (a2 − b2)2 + · · ·+ (an − bn)2.

Let X ⊆ Rn. A function f : X → X is called a contraction if there exists 0 ≤ s < 1 such that, for all
x, y ∈ X,

|f(x)− f(y)| ≤ s|x− y|.

The number s is called a contractivity factor for f .

Example 4.1. if f(x) = ax+ b, a, b ∈ R, a necessary and sufficient condition that f be a contraction on R
is |a| < 1.

Exercise 4.1. Consider the affine transformation:

T : R2 → R2,

T (x, y) =

[
a b
c d

] [
x
y

]
+

[
e
f

]
=

[
ax+ by + e
cx+ dy + f

]
.

Show that T is a contraction if max{|a|, |b|, |c|, |d|} < 1/2.

Exercise 4.2. Show that f : [0, 1]→ [0, 1],

f(x) =
1

4
x2,

is a contraction mapping.

Theorem 4.1 (Contraction mapping principle). Let X be a closed subset of Rn and suppose f : X → X is
a contraction. Then f has a unique fixed point. That is, there is one and only one point xf ∈ X such that

f(xf) = xf .

Moreover, if we choose any initial condition x0 ∈ X and successively compute the orbit of x0:

x0, f(x0), f(f(x0)), f(f(f(x0))), . . . ,

then this sequence converges to the fixed point xf .

We denote the nth point in the orbit of x0 by xn or f◦n(x0). Note it is important that the domain and
range of f be the same, so that the orbit of f is well-defined.

The proof of this theorem is beyond the scope of this lecture—it even holds in the much more general
setting of a complete metric space. However, we can illustrate the main idea of this theorem with the
following exercise:

Exercise 4.3. Consider the map

f : R→ R,

f(x) =
1

2
x+

1

2
.

Show that f has a unique fixed point xf . Prove that the orbit of any initial condition x0 converges to xf .

3

5. Iterated function systems

An iterated function system (IFS) is a closed and bounded subset X of Rn, together with a collection
w1, . . . , wm of contraction mappings,

wi : X → X, i = 1, . . . ,m,

where wi has contractivity factor 0 ≤ si < 1. We will write an IFS succintly as

{X;w1, . . . , wm}.

Let H(X) denote the collection of all closed and bounded subsets of X. For each IFS {X : w1, . . . , wm},
there is an associated Hutchinson operator acting on elements E ∈ H(X):

H(X) 3 E 7→W (E) ..=

m⋃
i=1

wi(E) =

{y ∈ Rn : there exists x ∈ X and some i so that y = wi(x)}.

This map is a contraction mapping, with contractivity factor

s = max
i∈{1,...,m}

si,

with respect to the Hausdorff distance between two elements of H(X),

h(E1, E2) = max{dist(E1, E2),dist(E2, E1)},

where

dist(E1, E2) = max
x∈E1

min
y∈E2

|x− y|.

Therefore, the Hutchinson operator W has a unique fixed point A,

W (A) = A,

which we call the attractor of the IFS. By the contraction mapping principle, A may be approximated by
computing the orbit W ◦k(E) for any initial condition E ∈ H(X).

The attractor A itself may have a very complicated structure, but the initial E we choose can be very
simple (e.g., just a point, or X itself). By computing just a few iterates of E under the Hutchinson operator,
we begin to see some of the important properties of A.

Exercise 5.1. Determine the attractor of the IFS{
[0, 1];w1(x) =

1

2
x,w2(x) =

1

2
x+

1

2

}
.

Example 5.1. The Cantor set is the attractor of the IFS{
[0, 1];w1(x) =

1

3
x, w2(x) =

1

3
x+

2

3

}
.

This fact can be used the show that the Cantor set consists of all points in [0,1] whose base three represen-
tation contains only 0’s and 2’s,

C =

x ∈ [0, 1] : x =

∞∑
j=1

ρj
3j
, ρj ∈ {0, 2}

 .

Historical note: Iterated function systems were popularized by two Australian mathematicians, John
Hutchinson and and Michael Barnsley. Hutchinson first introduced IFS’s in a 1981 paper. Barnsley later
developed several applications for them, including an application to image compression.

4

6. Python code to generate Sierpinski triangle

import numpy as np

import matplotlib.pyplot as plt

SIZE = 512

pic = np.zeros((SIZE, SIZE))

m = np.zeros((SIZE, SIZE))

for x in range(SIZE):

for y in range(SIZE):

pic[x,y] = 255

a1 = 0.5; b1 = 0; c1 = 0; d1 = 0.5; e1 = 0; f1 = 0

a2 = 0.5; b2 = 0; c2 = 0; d2 = 0.5; e2 = 256; f2 = 0

a3 = 0.5; b3 = 0; c3 = 0; d3 = 0.5; e3 = 128; f3 = 256

for z in range(8):

for x in range(SIZE):

for y in range(SIZE):

m[x,y] = 0

for x in range(SIZE):

for y in range(SIZE):

if pic[x,y]==255:

m[int(a1*x+b1*y+e1),int(c1*x+d1*y+f1)] = 255

m[int(a2*x+b2*y+e2),int(c2*x+d2*y+f2)] = 255

m[int(a3*x+b3*y+e3),int(c3*x+d3*y+f3)] = 255

pic[:] = m[:];

plt.figure()

plt.imshow(pic, cmap=’gray’)

7. Julia sets of quadratic polynomials

We consider complex polynomials,
Qc : C→ C, c ∈ C,

Qc(z) = z2 + c.

The filled-in Julia set of the polynomial Qc is

K(Qc) ..= {z ∈ C : the orbit Q◦kc (z) is bounded}.
The Julia set, J(Qc), of Qc, is defined to be the boundary of K(Qc).

Exercise 7.1. Show that the Julia set of the polynomial Q0(z) = z2 in the unit circle in the complex plane.

While the preceding exercise furnishes us with a very simple Julia set, in general Julia sets have a very
rich fractal structure.

The Mandelbrot set is
M ..= {c ∈ C : the orbit Q◦kc (0) is bounded},

Exercise 7.2. Show that if c ∈ C is such that |c| > 2, then c is not in the Mandelbrot set.

The Mandelbrot set has a very surprising and beautiful connection to the Julia sets of the polynomials
Qc,

M = {c ∈ C : J(Qc) is connected}.

5

8. Python code to generate Mandelbrot set

import numpy

import matplotlib.pyplot as plt

def mandelbrot(Re, Im, max_iter):

c = complex(Re, Im)

z = 0.0j

for i in range(max_iter):

z = z*z + c

if(z.real*z.real + z.imag*z.imag)>4:

return i

return max_iter

columns = 2000

rows = 2000

result = numpy.zeros([rows, columns])

for row_index, Re in enumerate(numpy.linspace(-2,1, num=rows)):

for column_index, Im in enumerate(numpy.linspace(-1,1,num=columns)):

result[row_index, column_index] = mandelbrot(Re, Im, 100)

plt.figure(dpi=100)

plt.imshow(result.T, cmap=’hot’, extent=[-2,1,-1,1])

plt.xlabel(’Re’)

plt.ylabel(’Im’)

plt.show()

9. Python code to generate Julia sets (with comments)

import numpy as np

import matplotlib.pyplot as plt

#size of image

SIZE = 1000

image = np.zeros((SIZE, SIZE))

shades = 30

#view box

XMIN = -2.0

XMAX = 2.0

YMIN = -2.0

YMAX = 2.0

#c value for polynomial

c = -1/4 - (1/2)*1j

6

#roots

r1= 0.5*(1 - (1 - 4*c)**(0.5))

r2= 0.5*(1 + (1 - 4*c)**(0.5))

#r1= 0.5*(1 - (1 + 4*c)**(0.5))

#r2= 0.5*(1 + (1 + 4*c)**(0.5))

#modr1 = abs(r1)

#modr2 = abs(r2)

#iteration

def F(z):

new=z**2 + c

return new

#loop over all pixels

for x in range(SIZE):

for y in range(SIZE):

#convert units

re = XMIN+x*(XMAX-XMIN)/SIZE

im = YMIN+y*(YMAX-YMIN)/SIZE

#set up point to iterate

z=re+im*1j

for i in range(shades):

#use escape time

#note multiple fixed points!

#what do they do

if abs(z) > 100 : break

if abs(z-r1)<0.002*shades:break

if abs(z-r2)<0.002*shades:break

#this is the fixed point on the Julia set

#if abs(z-r2)<0.01:break

z = F(z)

#first coordinate corresponds to imaginary axis

#need to reflect because of the unusual coordinate

#conventions in Python

image[-y,x] = i

plt.imshow(image - np.min(image),cmap = ’rainbow’)

plt.colorbar()

