Problem 1. $P(x) = x^3 + 33x^2 + 327x + 935$ Let a, b, c be the roots of P(x). Find $a^2 + b^2 + c^2$ without solving P(x) = 0

Problem 2. Let a polynomial P(x) be defined as $P(x) = x^2 - 2x + 6$ with its (complex) roots a and b. Then what is the value of $a^{10} + b^{10}$?

Problem 3. If roots of the polynomial $x^2 + x - 1 = 0$ are a and b, what is $a^7 + b^7$?

Problem 4. If the roots of the polynomial $P(x) = x^3 - 3x^2 + 6x - 9$ are a, b and c, what is the value of $a^5 + b^5 + c^5$?

Problem 5. If the roots of $P(x) = x^3 + 3x^2 + 4x - 8$ are *a*, *b*, and *c*, what is the value of $a^2(1+a^2) + b^2(1+b^2) + c^2(1+c^2)$?

Problem 6. Consider the cubic equation $245x^3 - 287x^2 + 99x - 9 = 0$ with roots a, b, c. If

$$\sum_{n=1}^{\infty} (a^n + b^n + c^n)$$

is of the form $\frac{m}{n}$, where *m* and *n* are coprime positive integers, what is the value of $\frac{m}{n+1}$?

Problem 7. If

$$a + b + c = 1$$

 $a^{2} + b^{2} + c^{2} = 2$
 $a^{3} + b^{3} + c^{3} = 3,$

what is the value of abc?

Problem 8. Evaluate $(1 + \sqrt{5}i)^{10} + (1 - \sqrt{5}i)^{10}$.

Problem 9. The number of ordered pairs of integers (m, n) for which $mn \ge 0$ and $m^3 + n^3 + 99mn = 33^3$ is equal to 2, 3, 33, 35, or 99? (AHSME)

Problem 10. Given the system of equations:

$$x + y + z = 1$$

$$x^{2} + y^{2} + z^{2} = 2$$

$$x^{3} + y^{3} + z^{3} = 3,$$

find the smallest positive integer value of n(>3) such that $x^n + y^n + z^n$ is an integer.

Problem 11. (AIME) Suppose that the sum of the squares of two complex numbers x and y is 7 and the sum of the cubes is 10. What is the largest real value that x + y can have?

Problem 12. Find x, y, and z if

$$x + y + z = 8$$

$$x^{2} + y^{2} + z^{2} = 62$$

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{90},$$

and $x \ge y \ge z$

Problem 13. Determine k, a positive integer if,

$$a^{1} + b^{1} + c^{1} = k$$

$$a^{2} + b^{2} + c^{2} = k$$

$$a^{3} + b^{3} + c^{3} = k$$

$$abc = 5!$$

Problem 14. Let $P_n = a^n + b^n$ where a and b are the roots of $x^2 + x + 1$, find the value of

$$\sum_{n=1}^{1729} (-1)^n P_n$$

Problem 15. Find the value of -a for which the roots x_1, x_2, x_3 of $x^3 - 6x^2 + ax - a = 0$ satisfy $(x_1 - 3)^3 + (x_2 - 3)^3 + (x_3 - 3)^3 = 0$

Problem 16. $P(x) = x^3 - 3x + 1$. $Q(x) = x^3 + Ax^2 + Bx + C$ be a polynomial with integer coefficients such that its roots are the 5th power of the roots of P(x). What is the value of A + B + C?

Credit to Brilliant.org for subject development and most of the problems.