"Squares" ${ }^{1}$

1. Determine the value of $1+2+3+\cdots+2018+2017+\cdots+2+1$.

Three different ways of solving the above problem are:
-
\bullet
-
2. Choose any natural number and compute its square. Than add both your original number and the next higher integer to this square. What do you notice?
3. Use a picture to explain why the above trick works.

[^0]4. Compute the values of $35^{2}, 45^{2}, 55^{2}$, and 65^{2}. What patterns do you notice in the last two digits of the answers? In the first two digits?
5. One of the numbers 212522,213444 , or 214369 is not a perfect square. Identify which one without performing any calculations.
6. Draw a picture of a 71×71 square with a 29×29 square removed. Dissect the remaining Lshaped figure into two pieces that can be reassembled into a rectangle. What does this tell you about the value of $71^{2}-29^{2}$?
7. Calculate the value of $20^{2}+19^{2}+\cdots+11^{2}-10^{2}-9^{2}-\cdots-1^{2}$ without a calculator.
8. Find the prime factorizations of 3599 and 2491.
9. Can a positive perfect square be equal to exactly twice another perfect square? Either find an example or explain why it could never occur.
10. It is possible for twice a perfect square to differ from another perfect square by exactly one. For example, $2 \cdot 5^{2}=50$, which is just above $7^{2}=49$. Find at least three other examples.
11. List your examples from the previous problem in increasing order. Then detect a pattern which will allow you to generate more examples, and check to see if your new examples work.

[^0]: ${ }^{1}$ This lesson was adapted from the book Circle in a Box, by Sam Vandervelde, pp. 131-140. Sam started the Stanford Math Circle and has led many brilliant sessions at Math Teachers' Circles around the Bay Area; the materials are often available online, and you are recommended to look them up and give his rich problem sets a try.

