Euclidean Algorithm II

BMC Int I Fall 2019

October 30, 2019

1 Unique Prime Factorization

Definition 1.1. A prime number is a positive number with only two positive divisors: 1 and itself. Any positive number that is not prime is called **composite**.

Exercise 1.2. What are the possible values for (p, n) for some prime p and some integer $n \in \mathbb{Z}$.

Lemma 1.3. If p is a prime number and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Corollary 1.4. If p is a prime number and p divides a product $a_1 \cdots a_k$, then p must divide at least one of the a_i .

Lemma 1.5. Every integer greater than 1 has at least one prime divisor.

Theorem 1.6. There are an infinite number of primes.

Definition 1.7. A twin prime is a pair of primes that differ by 2, so p and p + 2.

Conjecture 1.8 (Twin Prime Conjecture). There are an infinite number of twin primes.

Exercise 1.9. Prove that 5 is the only prime that is part of two twin primes.

Conjecture 1.10 (Goldbach's Conjecture). Every even integer greater than 2 can be written as the sum of two primes.

Theorem 1.11. Every positive integer greater than 1 can be uniquely written as a product of primes.

Exercise 1.12. What is the prime factorization of 63? What about 48?

Exercise 1.13. Prove that any composite number n must have a prime divisor p that satisfies $p \leq \sqrt{n}$.

2 Gaussian Integers

Definition 2.1. The Gaussian integers $\mathbb{Z}[i]$ are numbers of the form a+bi with $a, b \in \mathbb{Z}$ integers and $i = \sqrt{-1}$. The number a is called the **real part** and b is called the **imaginary part**. We add two numbers as

$$(a+bi) + (c+di) = (a+c) + (b+d)i,$$

and multiply as

$$(a+bi)(c+di) = ac + bci + adi + bdi2 = (ac - bd) + (ad + bc)i.$$

Exercise 2.2. Find (2+5i) + (-1+3i). Find $(1+i)^2$ and (1+i)(1-i) and (2+5i)(2-5i).

Definition 2.3. The complex conjugate of z = a + bi is a - bi and is denoted by \overline{z} .

Exercise 2.4. Show that for two Gaussian integers z, w that $\overline{zw} = \overline{z}\overline{w}$.

Exercise 2.5. Prove that $z\overline{z}$ is always a non-negative integer. We call $z\overline{z}$ the **norm** of z and denote it $N(z) = z\overline{z}$.

Exercise 2.6. Prove that for any two Gaussian integers z, w, N(zw) = N(z)N(w). (Hint: Use the fact that multiplication is commutative, e.g. $\alpha\beta = \beta\alpha$)

Example 2.7. To divide two Gaussian integers $\frac{z}{w}$, it is easier to multiply the top and bottom by the conjugate of the denominator. For example,

$$\frac{6+2i}{2-i} = \frac{(6+2i)(2+i)}{(2-i)(2+i)} = \frac{(12-2)+(6+4)i}{(4+1)+(-2+2)i} = \frac{10+10i}{5} = 2+2i.$$

Exercise 2.8. Find $\frac{7+i}{1+i}$ and $\frac{3+4i}{2+i}$.

Definition 2.9. We say that z divides w or $z \mid w$ for two Gaussian integers z, w if there exists another Gaussian integer q such that w = zq.

Example 2.10. The calculations before show us that $(2-i) \mid (6+2i)$ and $(1+i) \mid (7+i)$.

Exercise 2.11. Does 3 + 4i divide 13 + 20i? (Hint: look at the norms) Does 2 - i divide 3 + 4i?

3 Prime Numbers

Definition 3.1. A unit is a Gaussian integer that divides 1.

Exercise 3.2. Prove that if u is a unit, then N(u) = 1 and the only units are $\pm 1, \pm i$.

Definition 3.3. An associate w of a Gaussian integer z is another Gaussian integer such that z/w is a unit.

Example 3.4. 2 + i and -1 + 2i are associates.

Exercise 3.5. Find all the associates are 3 + 4i.

Definition 3.6. A Gaussian integer z is **prime** if the only things that divide it are units and its associates.

Example 3.7. This is the analog of the case with the integers. An integer p is prime if the only things that divide it are ± 1 and $\pm p$.

Exercise 3.8. Which of the following numbers are a sum of two squares? 3, 5, 11, 13, 23, 29? Do you notice anything about the numbers that are a sum of two squares?

Exercise 3.9. Is 2 prime in $\mathbb{Z}[i]$? What about 3, 5, 13, 29?

Exercise 3.10. Find all the prime Gaussian integers with norm less than 25. (Hint: Start from norm 2 and work your way up. Use the fact that $N(\alpha\beta) = N(\alpha)N(\beta)$ to reduce the amount of divisors you need to check for.)