FUNCTIONAL EQUATIONS

IGOR GANICHEV

1. Introduction

Definition 1.1. Let $f: A \rightarrow B$ be a function. The set A is called the domain, and B the codomain.

Definition 1.2. A function $f: A \rightarrow B$ is injective if $f(x)=f(y) \Longleftrightarrow x=y$. (Sometimes also called one-to-one.)
Definition 1.3. A function : $A \rightarrow B$ is surjective if for all $b \in B$, there is some $x \in A$ such that $f(x)=b$. (Sometimes also called onto.)
Definition 1.4. A function is bijective if it is both injective and surjective.

2. Problems

Problem 2.1. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$
f(x)+2 f(-x)=3 x^{2}+x
$$

Problem 2.2. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$
f(2 x+1)=x^{2}
$$

Problem 2.3. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$
f(x)^{2}=x^{2}
$$

Problem 2.4. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$

$$
f(x+y)=f(x)+y
$$

Problem 2.5. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$

$$
f(x+y)+f(x-y)=2 x^{2}+2 y^{2}
$$

Problem 2.6. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}, x \neq 0$

$$
f(x)+2 f\left(\frac{1}{x}\right)=3 x
$$

Problem 2.7. If function $f: \mathbb{R} \rightarrow \mathbb{R}$ is strictly monotonic, what can we say about $f(f(x))$?
Problem 2.8. If function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(f(x))=x$ for all $x \in \mathbb{R}$, show that it is bijective.
Problem 2.9. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$
\begin{gathered}
f(y f(x)+x y)=2 x y \\
f(f(x))=x \\
1
\end{gathered}
$$

Problem 2.10. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$
f\left(f(x)^{2}+f(y)\right)=x f(x)+y
$$

Problem 2.11. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$
f\left(f(y) x^{2}\right)=x f(y)+1
$$

Problem 2.12 (Cauchy's Functional Equation over \mathbb{Q}). Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that for all $x \in \mathbb{Q}$

$$
f(x+y)=f(x)+f(y)
$$

3. Extra Problems

Problem 3.1. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}, x \neq 0$

$$
f(x)+f\left(1-\frac{1}{x}\right)=2 x
$$

Problem 3.2. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$
(x-y) f(x+y)-(x+y) f(x-y)=4 x y\left(x^{2}-y^{2}\right)
$$

