FUNCTIONAL EQUATIONS

IGOR GANICHEV

1. INTRODUCTION

Definition 1.1. Let $f : A \to B$ be a function. The set A is called the *domain*, and B the *codomain*.

Definition 1.2. A function $f : A \to B$ is *injective* if $f(x) = f(y) \iff x = y$. (Sometimes also called *one-to-one.*)

Definition 1.3. A function : $A \to B$ is *surjective* if for all $b \in B$, there is some $x \in A$ such that f(x) = b. (Sometimes also called *onto*.)

Definition 1.4. A function is *bijective* if it is both injective and surjective.

2. Problems

Problem 2.1. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$ $f(x) + 2f(-x) = 3x^2 + x.$

Problem 2.2. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$f(2x+1) = x^2$$

Problem 2.3. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$ $f(x)^2 = x^2$.

Problem 2.4. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$ f(x+y) = f(x) + y.

Problem 2.5. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$ $f(x+y) + f(x-y) = 2x^2 + 2y^2$.

Problem 2.6. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}, x \neq 0$

$$f(x) + 2f(\frac{1}{x}) = 3x$$

Problem 2.7. If function $f : \mathbb{R} \to \mathbb{R}$ is strictly monotonic, what can we say about f(f(x))? **Problem 2.8.** If function $f : \mathbb{R} \to \mathbb{R}$ satisfies f(f(x)) = x for all $x \in \mathbb{R}$, show that it is bijective.

Problem 2.9. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$f(yf(x) + xy) = 2xy$$
$$f(f(x)) = x$$

Problem 2.10. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$f(f(x)^{2} + f(y)) = xf(x) + y$$

Problem 2.11. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$f(f(y)x^2) = xf(y) + 1$$

Problem 2.12 (Cauchy's Functional Equation over \mathbb{Q}). Find all functions $f : \mathbb{Q} \to \mathbb{Q}$ such that for all $x \in \mathbb{Q}$

$$f(x+y) = f(x) + f(y)$$

3. Extra Problems

Problem 3.1. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}, x \neq 0$

$$f(x) + f(1 - \frac{1}{x}) = 2x$$

Problem 3.2. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$ $(x - y)f(x + y) - (x + y)f(x - y) = 4xy(x^2 - y^2)$