Euclidean Algorithm II

BMC Int II Fall 2019

October 2, 2019

1 Gaussian Integers

Definition 1.1. The Gaussian integers $\mathbb{Z}[i]$ are numbers of the form a+bi with $a,b \in \mathbb{Z}$ integers and $i = \sqrt{-1}$. The number a is called the **real part** and b is called the **imaginary part**. We add two numbers as

$$(a+bi) + (c+di) = (a+c) + (b+d)i,$$

and multiply as

$$(a+bi)(c+di) = ac + bci + adi + bdi^2 = (ac - bd) + (ad + bc)i.$$

Exercise 1.2. Find (2+5i) + (-1+3i). Find $(1+i)^2$ and (1+i)(1-i) and (2+5i)(2-5i).

Definition 1.3. The complex conjugate of z = a + bi is a - bi and is denoted by \bar{z} .

Exercise 1.4. Show that for two Gaussian integers z, w that $\overline{zw} = \overline{z}\overline{w}$.

Exercise 1.5. Prove that $z\bar{z}$ is always a non-negative integer. We call $z\bar{z}$ the **norm** of z and denote it $N(z) = z\bar{z}$.

Exercise 1.6. Prove that for any two Gaussian integers z, w, N(zw) = N(z)N(w). (Hint: Use the fact that multiplication is commutative, e.g. $\alpha\beta = \beta\alpha$)

Example 1.7. To divide two Gaussian integers $\frac{z}{w}$, it is easier to multiply the top and bottom by the conjugate of the denominator. For example,

$$\frac{6+2i}{2-i} = \frac{(6+2i)(2+i)}{(2-i)(2+i)} = \frac{(12-2)+(6+4)i}{(4+1)+(-2+2)i} = \frac{10+10i}{5} = 2+2i.$$

Exercise 1.8. Find $\frac{7+i}{1+i}$ and $\frac{3+4i}{2+i}$.

Definition 1.9. We say that z divides w or $z \div w$ for two Gaussian integers z, w if there exists another Gaussian integer q such that w = zq.

Example 1.10. The calculations before show us that $(2-i) \div (6+2i)$ and $(1+i) \div (7+i)$.

Exercise 1.11. Does 3+4i divide 13+20i? (Hint: look at the norms) Does 2-i divide 3+4i?

2 Divisibility

Theorem 2.1 (Division Algorithm). For any two Gaussian integers $a, b \in \mathbb{Z}[i]$, there exist integers $q, r \in \mathbb{Z}[i]$ such that a = bq + r and $0 \le N(r) < N(b)$.

Remark. This is the same theorem we showed before except we now set the remainder to have N(r) < N(b) instead of r < b.

Example 2.2. If a = 9 + 2i and b = 2 + 5i, then we can calculate

$$\frac{9+2i}{2+5i} = \frac{(9+2i)(2-5i)}{(2+5i)(2-5i)} = \frac{28-41i}{29} = \frac{28}{29} - \frac{41}{29}i.$$

Then in order to find q, we round this to the nearest Gaussian integer. That would be 1-i and get that

$$r = a - bq = (9 + 2i) - (2 + 5i)(1 - i) = (9 + 2i) - (7 + 3i) = 2 - i.$$

Notice that N(r) = 5 < 29 = N(b) as required.

Exercise 2.3. Use the Division Algorithm to find the remainder when we divide 2 + 5i by 2 - i. What about 3 + 9i by -1 + 3i?

3 Euclidean Algorithm

Definition 3.1. Let $a, b \in Z[i]$ be Gaussian integers that are both non zero. The **greatest common divisor (gcd)** of a, b is the Gaussian integer d with the largest norm that is a divisor of both a and b. We write that $d = \gcd(a, b)$ or d = (a, b).

Example 3.2. Consider the following calculation:

$$3 + 9i = (2 - 2i) \cdot (-1 + 3i) + (-1 + i) \tag{1}$$

$$-1 + 3i = (2 - i) \cdot (-1 + i) + 0 \tag{2}$$

(3)

This shows that (3+9i, -1+3i) = (-1+3i, -1+i) = (0, -1+i) = -1+i so their gcd is -1+i.

Exercise 3.3. Use the Euclidean Algorithm for Gaussian integers to find the gcd of (9+2i, 2+5i) and (5+25i, 2+11i).

Example 3.4. Write -1 + i as a linear combination of 3 + 9i and -1 + 3i.

Exercise 3.5. Repeat the same process to write (9 + 2i, 2 + 5i) as a linear combination of 9 + 2i and 2 + 5i. Do the same for (5 + 25i, 2 + 11i).

4 Unique Prime Factorization

Definition 4.1. A unit is a Gaussian integer that divides 1.

Exercise 4.2. Prove that if u is a unit, then N(u) = 1 and the only units are $\pm 1, \pm i$.

Definition 4.3. An associate w of a Gaussian integer z is another Gaussian integer such that z/w is a unit.

Example 4.4. 2+i and -1+2i are associates.

Exercise 4.5. Find all the associates are 3 + 4i.

Definition 4.6. A Gaussian integer z is **prime** if the only things that divide it are units and its associates.

Example 4.7. This is the analog of the case with the integers. An integer p is prime if the only things that divide it are ± 1 and $\pm p$.

Exercise 4.8. Is 2 prime in $\mathbb{Z}[i]$? What about 3? What about 29? Hint: See Exercise 1.2.

Exercise 4.9. Show that if z is a prime Gaussian integer, then any of its associates are. Show that \bar{z} is also prime.

Exercise 4.10. Find all the prime Gaussian integers with norm less than 25. (Hint: Start from norm 2 and work your way up. Use the fact that $N(\alpha\beta) = N(\alpha)N(\beta)$ to reduce the amount of divisors you need to check for.)

Exercise 4.11. What are the possible values for (p, z) for some Gaussian prime p and some Gaussian integer $z \in \mathbb{Z}[i]$.

Lemma 4.12. If p is a prime number and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Corollary 4.13. If p is a prime number and p divides a product $a_1 \cdots a_k$, then p must divide at least one of the a_i .

Lemma 4.14. Every Gaussian integer with norm greater than 1 has at least one prime divisor.

Theorem 4.15. There are an infinite number of Gaussian primes.

Theorem 4.16. Every Gaussian integer with norm greater than 1 can be uniquely written as a product of primes up to associates.

Exercise 4.17. What is the prime factorization of 2? What about 5 + i? What about 9 + 12i?

5 A Counter-example to Unique Prime Factorization

Definition 5.1. $\mathbb{Z}[\sqrt{-5}]$ are numbers of the form $a + b\sqrt{-5}$ with $a, b \in \mathbb{Z}$ integers. We add two numbers as

$$(a+b\sqrt{-5}) + (c+d\sqrt{-5}) = (a+c) + (b+d)\sqrt{-5},$$

and multiply as

$$(a+b\sqrt{-5})(c+d\sqrt{-5}) = ac + bc\sqrt{-5} + ad\sqrt{-5} + bd\sqrt{-5}^2 = (ac - 5bd) + (ad + bc)\sqrt{-5}.$$

Definition 5.2. The complex conjugate of $z = a + b\sqrt{-5}$ is $a - b\sqrt{-5}$ and is denoted by \bar{z} .

Example 5.3. Show that for two $z, w \in \mathbb{Z}[\sqrt{-5}]$ that $\overline{zw} = \overline{z}\overline{w}$.

Example 5.4. Prove that $z\bar{z}$ is always a non-negative integer. We call $z\bar{z}$ the **norm** of z and denote it $N(z) = z\bar{z}$.

Example 5.5. Prove that for any two $z, w \in \mathbb{Z}[\sqrt{-5}]$, N(zw) = N(z)N(w).

Example 5.6. We can write $6 = 2 \cdot 3$ and $6 = (1 + \sqrt{-5})(1 - \sqrt{-5})$. Looking at the norms of the elements, we get that $36 = 4 \cdot 9 = 6 \cdot 6$. So, if there was unique prime factorization, there must be primes with norm 2 and norm 3. But $N(a + b\sqrt{-5}) = a^2 + 5b^2$ and thus they can't exist. This shows that there is not a unique factorization.

Example 5.7. When dividing by 2, the possible remainders are $0, 1, \sqrt{-5}, 1 + \sqrt{-5}$. We see that $N(1+\sqrt{-5}) = 6 > N(2) = 4$ so there is no division algorithm possible. This is a reason why there is no unique prime factorization.

Conjecture 5.8. Are there an infinite number of choices for $d \in \mathbb{Z} > 0$ such that $\mathbb{Z}[\sqrt{d}]$ has unique prime factorization?