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Instructions: This text is for reading after the class. During class, pay
attention. If you get bored, try some of the harder problems in the mixed
problems section, or have a go at the unsolved problem in Section 4.

We consider sequences of numbers, e.g.

1, 2, 4, 8, 16, . . .

1,
1

2
,
1

3
,
1

4
, . . .

1, 1, 2, 3, 5, 8, 13, . . .

Generally we write a0, a1, a2, . . . or (an) for a sequence.2

For the first two sequences there are closed formulas: an = 2n and an =
1

n+1 for all n, respectively.
The third sequence is built from the law an = an−1 + an−2 (for n ≥ 2).
This is a recurrence relation, i.e. a rule by which an can be foand from

1Author: D. Grieser, University of Oldenburg, Germany
2One also writes (an)n∈N0 . In this text n will always start at n = 0.
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previous sequence elements. We also speak of a recursively defined sequence.
For a recurrence relation to determine a sequence uniquely you must specify
initial values, in this case a0 = 1, a1 = 1.

1 Recursively defined sequences

There are many interesting problems connected with recursively defined se-
quences. For example:

1. Can we find a closed formula?

2. How do the an behave for large n? Do they approach some number,
or infinity, as n → ∞? (We then also say that this is the limit, and
that an tends to this limit, and write an → x if the limit is x.)3 If
yes, how quickly? If they tend to infinity, then how fast (for example
exponentially, polynomially)?

Problem 1. Find a closed formula for the sequences defined by:
an = an−1 + 2, a0 = 1; bn = 3bn−1, b0 = 1; cn = 2cn−1 + 1, c0 = 2.

Often it is difficult or impossible to find a closed formula. Sometimes you
can still find the behavior as n→∞:

Example (Finding a limit from a recurrence relation).

an+1 =
1

2

(
an +

1

an

)
, a0 = 2

The first terms are 2, 54 ,
41
40 . This leads us to conjecture:

1. All an are bigger than 1.

2. The sequence is decreasing, i.e. an+1 ≤ an for all n.

3. The terms of the sequence approach the limit 1.

The first two claims are easy to check. (In 1. use x + 1
x ≥ 2 for all x > 0,

with equality if and only if x = 1.)
Then the third claim follows from the first two. This works in two steps.

3We will not treat limits formally (that’s done in an analysis course). Here are some
simple examples for intuition: an = 1

n
, that is 1, 1

2
, 1
3
, 1
4
, . . . tends to 0, an = n tends to

∞ and the sequence 0, 1, 0, 1, 0, 1, . . . has no limit.
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First, the following theorem holds. It should be intuitively clear (and is
proved rigorously in any analysis class):

Theorem: A decreasing sequence which is bounded from below has a limit.
(Of course there is a similar fact for increasing and bounded above.)

In the second step, we find the limit: Call the limit x. How do we calculate
it? Since x is the limit of the an, it is also the limit of the an+1, so we get
from the recurrence relation for n→∞:

an+1 = 1
2

(
an + 1

an

)
↓ ↓
x = 1

2

(
x+ 1

x

)
This is the fixed point equation. A short calculation then gives x = 1 (or
x = −1, but x must be positive).
Therefore, the limit of the an is 1.

Problem 2. Investigate how the sequence defined by an+1 = 1
2

(
an + 2

an

)
,

a0 = 5 behaves as n→∞.

Use a calculator to find the first 6 terms of this sequence. You will observe
that it approaches 1.4142... very quickly, which is

√
2. Why?

Problem 3. Investigate how fast the sequence in Problem 2 approaches its
limit.

Problem 4. Investiate the behavior of the sequence defined by an+1 = 1−an,
a0 = 0 as n→∞. What is the solution of the fixed point equation?

We see: it is not sufficient to just solve the fixed point equation.

Linear recurrence relations

We want to find a closed formula for the Fibonacci numbers, which are
defined by the recurrence relation

Fn = Fn−1 + Fn−2 , F0 = F1 = 1

The first few are 1, 1, 2, 3, 5, 8, . . . .
Try to guess a formula! It seems impossible.
There are (at least) two systematic methods to find a closed formula:
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1. By a power ansatz.4

2. Using generating functions.

The power ansatz is simpler but generating functions are more powerful:
they can be used for more problems, as we will see!

Solving the Fibonacci recurrence relation by a power ansatz

Step 1: At first, forget about the initial condition. Just try to find a
solution of the recurrence relation an = an−1 + an−2 alone. Try an = xn.
So we must have, for all n: xn = xn−1 + xn−2.
This is equivalent5 to x2 = x + 1. This equation has two solutions6 x = α
and x = β:

α =
1 +
√

5

2
, β =

1−
√

5

2
(1)

So both the sequences (αn) and (βn) satisfy the Fibonacci recurrence re-
lation. But not the initial condition.

Step 2: How can we satisfy the initial condition?
Important observation: If A,B are any numbers then the sequence an =
Aαn +Bβn also satisfies the recurrence relation.
So we just need to find A,B in such a way that the initial conditions are
satisfied. Taking n = 0 and n = 1 we get 1 = A+B, 1 = Aα+Bβ. If that
is satisfied then it follows that Fn = an.
A short calculation yields A = α√

5
, B = − β√

5
, thus:

Fn =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
 (2)

This formula seems crazy! The irrational number
√

5 appears at three places,
but we know that all the Fn are integers. How does that fit together? Try
multiplying out the powers for n = 1, 2, 3 and see what happens!7

4Ansatz = a guessed form of a solution, which has some indeterminates that can be
found by plugging in the ansatz into the equation. This German word is also used in
mathematical English.

5if x 6= 0; of course x = 0 gives a solution but a boring one.
6Recall how to solve this quadratic equation: x2 = x + 1 ⇐⇒ x2 − x = 1, now

complete the square: ⇐⇒ x2 − 2 · 1
2
x +

(
1
2

)2
=
(
1
2

)2
+ 1 ⇐⇒

(
x− 1

2

)2
= 5

4
⇐⇒

x− 1
2

= ±
√

5
4

= ±
√
5

2
⇐⇒ x = 1±

√
5

2
7If you know the general binomial formula explain why the formula always yields a

rational number.
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Problem 5. Solve the recurrence relation an = 7an−1 − 12an−2, a0 = 2,
a1 = 7.

Problem 6. Solve the recurrence relation an = 2an−1−an−2 (a) with initial
conditions a0 = a1 = 1, (b) with initial conditions a0 = 0, a1 = 1.

In this problem you see that the power ansatz does not always work. The
reason is that the equation x2 − 2x + 1 = 0 has only one solution x = 1.
This gives the solution in (a) but not the solution in (b).

Problem 7. Prove that any solution of the recurrence relation an =
√

2an−1−
an−2 has period 8, that is, an+8 = an for all n.

One way to do this is using complex numbers and the power series ansatz:
the solutions of x2 −

√
2x+ 1 are x± = 1√

2
(1± i). Squaring yields ±i, and

squaring two more times you get 1. 8

Advanced reading: Some general theory for linear recurrence relations:
A linear recurrence relation is one of the form

an = ck−1an−1 + · · ·+ c0an−k , (3)

where k ∈ N and c0, . . . , ck−1 ∈ R are given. The integer k is called the length of
the recurrence. The Fibonacci recurrence is linear with length 2.
As initial conditions you need the k numbers a0, . . . , ak−1.
Let us try the power ansatz:

Step 1: We look for sequences an = xn satisfying the recurrence relation. This
means xn = ck−1x

n−1 + · · ·+ c0x
n−k. Dividing by xn−k and reordering we see that

this is equivalent to

p(x) = 0,where p(x) := xk − ck−1x
k−1 − · · · − c0 . (4)

That is: an = xn satisfies the recurrence relation if and only if x is a zero of the
polynomial p(x). This polynomial is called the characteristic polynomial of the
recurrence relation.
Background knowledge: a polynomial of degree k has at most k distinct zeroes.

Step 2: How do we find a sequence satisfying, in addition, the initial conditions?
Suppose p has precisely k zeroes x1, . . . , xk. We look for numbers A1, . . . , Ak so that
an = A1x

n
1 + · · ·+ Akx

n
k satisfies the initial condition. That is, for given numbers

a0, . . . , ak−1 we must have

a0 = A1 + . . . + Ak

a1 = A1x1 + . . . + Akxk
...

ak−1 = A1x
k−1
1 + . . . + Akx

k−1
k

8Another quick way to see this is to use the polar representation of complex numbers
and Euler’s formula: 1√

2
(1± i) = e±iπ/4 implies x8± = e±8·iπ/4 = e±2πi = 1.
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This is a system of k linear equations for the k unknowns A1, . . . , Ak. One can
show that it always has a non-zero solution.9

If p has fewer than k distinct zeroes then we get k equations for less than k un-
knowns, and this is not solvable for arbitrary given a0, . . . , ak−1. Compare Problem
6.
Note that the xi and the Ai can be complex numbers. They may be non-real even
if the recurrence relation and the initial conditions are real. See Problem 7 for an
example.

Result: The linear recurrence relation (3) with arbitrary initial conditions can be
solved by the power ansatz if and only if the characteristic polynomial p(x) in (4)
has k distinct roots.

What do you do if p has fewer roots? See below!

2 Generating functions

Generating functions are an amazingly powerful tool for analyzing sequences.

Definition 2.1. The generating function of a sequence a0, a1, . . . is the
function

f(x) = a0 + a1x+ a2x
2 + . . .

that is, the power series with coefficients a0, a1, . . . .
10

Sometimes you can simplify the infinite sum. Fundamental example: a0 =
a1 = · · · = 1.

Geometric series: 1 + x+ x2 + x3 + · · · = 1

1− x
(5)

for |x| < 1. This follows from the formula for the geometric sum

1 + x+ x2 + · · ·+ xn =
1− xn+1

1− x

by letting n→∞ since xn+1 → 0 if |x| < 1.11

Squaring (5) and multiplying out we get 1 + 2x + 3x2 + · · · = 1
(1−x)2 . You

get the same result by differentiating (5).

9The coefficient matrix is the so-called Vandermonde matrix, it is always invertible if
all xi are distinct.

10If you want to know the domain of definition of f then you should investigate for
which x the infinite sum converges. However, for many problems (in particular for these
notes) this is irrelevant. This statement can be justfied rigorously by considering all series
as formal power series.

11Another, formal proof: (1 + x+ x2 + . . . )(1− x) = 1− x+ x− x2 + x2 − x3 · · · = 1.
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Problem 8. Find simple expressions for the generating functions of the
sequences
an = 2n, bn = n, cn = n2n, dn = n2, (en) = (1, 0, 1, 0, 1, 0, . . . )

Solution of the Fibonacci recurrence relation via generating func-
tions

Using Fn = Fn−1 + Fn−2, F0 = F1 = 1 we get

f(x) = F0 + F1x+ F2x
2 + F3x

3 . . .

= 1 + x+ (F1 + F0)x
2 + (F2 + F1)x

3 + . . .

= 1 + (x+ F1x
2 + F2x

3 + . . . ) + (F0x
2 + F1x

3 + . . . )

= 1 + xf(x) + x2f(x)

hence

f(x) =
1

1− x− x2
= − 1

x2 + x− 1

Now the trick is to expand this in a power series by a different route:

Step 1: Partial fractions. The zeroes of the polynomial x2 + x − 1 are

a = −1+
√
5

2 and b = −1−
√
5

2 , so we have x2 + x− 1 = (x− a)(x− b). We now
look for numbers C,D satisfying

1

x2 + x− 1
=

C

x− a
+

D

x− b
.

Multiplying by x2 + x− 1 = (x− a)(x− b) we get

1 = C(x− b) +D(x− a) = (C +D)x+ (−Cb−Da)

and by comparing coefficients of like powers of x we get 0 = C + D, 1 =
−Cb−Da. After a short calculation we find C = 1√

5
= −D, so

f(x) = − 1√
5

(
1

x− a
− 1

x− b

)
(6)

Step 2: Using the geometric series we now obtain

1

x− a
=

1

a

1
x
a − 1

= −1

a

1

1− x
a

= −1

a

(
1 +

x

a
+
x2

a2
+ . . .

)
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The coefficient of xn is −a−n−1. The result for 1
x−b is analogous, and using

(6) we get that the coefficient of xn in f(x) is

1√
5

(
a−n−1 − b−n−1

)
is. Now this coefficent is also equal to Fn, by the definition of f(x). So this
is the formula for Fn that we were looking for. (It looks different than (2)
but is actually the same because of a = 1

α , b = 1
β .)12

Linear recurrences for which the power ansatz fails

Using generating functions you can also find the ’missing’ solution in Prob-
lem 6 which we could not find using the power ansatz:

Problem 9. Find a closed formula for the solution of an = 2an−1 − an−2,
a0 = 0, a1 = 1 using generating functions.

Advanced reading: General theory of linear recurrence relations, part II:
How do we solve a general linear recurrence relation (3) using generating functions?
Let p(x) be the characteristic polynomial as in (4). The generating function for the

an has the form f(x) = r(x)
q(x) , where q(x) = xkp( 1

x ) is the polynomial reciprocal to

p and where r is a polynomial of degree < k which is determined using the initial
conditions. The partial fractions decomposition of f is a sum of terms of the form

A
(x−zi)l

where zi are the zeroes of q and where l = 0, . . . , di − 1, with di denoting

the multiplicity of the zero zi. Now you can expand the function 1
(1−x)l

as power

series with coefficients n(n− 1) . . . (n− l+ 1). Note that the latter is a polynomial
in n of degree k. Proceeding as in the Fibonacci example we get:

Result: Suppose that the characteristic polynomial (4) of the linear recurrence
relation (3) has the zeroes x1, . . . , xm with multiplicities d1, . . . , dm, respectively.
Then the general solution of the recurrence relation is a sum of terms of the form
Anlxni , 0 ≤ l < di, i = 1, . . . ,m.

Note that p having less than k zeroes is equivalent to p having multiple zeroes (i.e.

some di is bigger than 1).

In short: If p has multiple zeroes than the power ansatz needs to be extended
to include terms of the form nlxn, where l is less than the multiplicity of x
as a zero of p.

12It is not a coincidence that a = 1
α

, b = 1
β

: α, β are the zeroes of p(x) = x2 − x − 1,

the characteristic polynomial of the Fibonacci recurrence. The polynomial 1 − x − x2
which occured as denominator of f(x) is reciprocal to p(x) in the sense that the order of
coefficients is reversed, or equivalently 1− x− x2 = x2p( 1

x
). Therefore its zeroes must be

1
α

, 1
β

. All of this generalizes to any linear recurrence relation. Check it!
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3 Partition numbers

Let pn be the number of partitions of n ∈ N, i.e. of ways to represent n
as a sum of natural numbers, ignoring order. For example, the partitions of
n = 4 are

4, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1,

so p4 = 5.13 We also define p0 = 1. The partition numbers for 0 ≤ n ≤ 10
are 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42.
There is no obvious closed formula or recurrence relation. But:

Problem 10. Show that the generating function of the partition numbers is

p(x) =
1

1− x
· 1

1− x2
· 1

1− x3
· · ·

Let

on = the number of partitions of n with odd summands

dn = the number of partitions of n with distinct summands

Problem 11. Find on, dn for n = 1, . . . , 8. Conjecture?

Using generating functions it is not difficult to prove the conjecture (again
we set o0 := 1, d0 := 1):

Problem 12. Show that the sequences (on), (dn) have generating functions

o(x) =
1

1− x
· 1

1− x3
· 1

1− x5
· · ·

d(x) = (1 + x) · (1 + x2) · (1 + x3) · · ·

Problem 13. Prove that o(x) = d(x).

So this implies that on = dn for all n. It is not easy to prove this directly
from the definition. Try it!
Partition numbers have many more surprising properties. For example one
can show that

pn ∼
1

4n
√

3
e
√
nπ
√

2/3

13It is customary to count a sum with just one term also as a partition. In this way all
formulas are much nicer than they would be otherwise.
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where ∼ means that the ratio of the left and right hand sides tends to 1
as n → ∞.14 Also, the partition numbers satisfy a highly non-trivial (and
hard to find!) recurrence relation:

pn = pn−1 + pn−2 − pn−5 − pn−7 + pn−12 + pn−15 − . . .

(Euler’s pentagonal number theorem)

4 An unsolved problem: The Collatz problem

Define a sequence as follows: Pick a natural number a0 and then let

an+1 =

{
an/2 if an is even

3an + 1 if an is odd

Let’s try some examples:

• a0 = 1 yields 1, 4, 2, 1, 4, 2, 1, . . .

• a0 = 3 yields 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, . . .

If you try some more values of a0, you will find that sooner or later you will
always get 1 (and then 4, 2, 1, . . . ). It is an unsolved problem to prove (or
disprove) that this is true for all initial values a0.

5 Mixed problems

Problem 14. A sequence begins 1, 2, 4. What’s the next term?

Problem 15. Let an+1 = 1
2

(
an + 1

an

)
, a0 = 2. Find a closed formula for

an.

Problem 16. Let x > 0. How can you calculate
√
x quickly to many digits,

using only the basic arithmetic operations?

Problem 17. Let a0 = a1 = 1 and an =
√
an−1 +

√
an−2 for n ≥ 2. What

happens for n→∞?

Problem 18. Find

√
6 +

√
6 +
√

6 + . . .. What does this expression actu-
ally mean?

14To prove this you need complex analysis. See the book Tom Apostol: Introduction to
Analytic Number Theory.
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Problem 19. Let a0 = 1, an+1 = an + 1
an

. Is the sequence (an) bounded?

Problem 20. Let α = 1+
√
5

2 be the golden ratio. Find 1√
5
α12 to two digits

after the decimal point without using a calculator.

Problem 21. In how many ways can you tile a 2× n rectangle using 1× 2
dominoes?

Problem 22. Show that pn, the number of partitions of n, satisfies pn ≥
2b
√
nc for n ≥ 2.

6 Hints

Hint 1. For cn: Add 1, then the recurrence relation changes to cn + 1 =
2(cn−1 + 1). What does this mean for dn = cn + 1?
Hint 2. Is (an) decreasing? The arithmetic-geometric mean inequality
(AGM) is useful:

√
xy ≤ x+y

2 for x, y ≥ 0, with equality if and only if
x = y.
Hint 3. Consider bn = an −

√
2 and estimate bn+1 in terms of bn.

Hint 6. First calculate some terms of the sequence.
Hint 8. For dn differentiate (5) twice.
Hint 10. Write each factor as a geometric series, then multiply out. In
which ways can the term xn appear?
Hint 13. 1 + xk = 1−x2k

1−xk

Hint 15. a1 = 1
2(2 + 1

2) = 5
4 , a2 = 1

2

(
5
4 + 4

5

)
= 1

2
42+52

4·5 = 41
40 . Do you see a

pattern?
Hint 17. First solve the fixed point equation.
Hint 18. Set a0 = 0, an =

√
6 + an−1 and find the limit for n→∞.

Hint 20. β = −1+
√
5

2 = −0.618 . . .
Hint 21. Let an be this number. Find a recurrence relation.
Hint 22. Use that 2b

√
nc is the number of subsets of {1, 2, . . . , b

√
nc}.

7 Solutions

Solution 1. an = 2n+ 1, bn = 3n, cn = 3 · 2n − 1
Solution 2. an+1 ≤ an ⇐⇒ 1

2(an + 2
an

) ≤ an ⇐⇒ 2
an
≤ an ⇐⇒ 2 ≤ a2n.

So we need to check whether a2n ≥ 2 for all n. By the AGM inequality

an = 1
2(an−1 + 2

an−1
) ≥

√
an−1

2
an−1

=
√

2, so this holds for n ≥ 1, and

since it is true for a0 = 5, the sequence (an) decreases for all n. Since it is
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bounded below, the sequence converges to a limit x. The limit must satisfy
x = 1

2(x+ 2
x), so x =

√
2.

Remark: The initial value is irrelevant, as long as it’s positive. If a0 <
√

2
then (an) decreases only starting at n ≥ 1.
Solution 3. For bn = an−

√
2 we have bn+1 = an+1−

√
2 = 1

2(an+ 2
an

)−
√

2 =
a2n+2−2

√
2an

2an
= (an−

√
2)2

2an
< 1

2b
2
n for all n using an > 1. So the deviation of

an from the limit
√

2 gets at least squared and halved in each step. So the
number of correct digits after the decimal point roughly doubles in each
step.
Solution 4. 0, 1, 0, 1, . . . has no limit as n → ∞ (although the fixed point
equation x = 1− x has the solution x = 1

2).
Solution 5. an = 3n + 4n

Solution 6. (a) an = 1 for all n. (b) an = n.
Solution 7. Let a = an, b = an+1, then an+2 =

√
2b− a, an+3 =

√
2an+2−

an+1 = 2b−
√

2a− b = b−
√

2a, an+4 =
√

2(b−
√

2a)− (
√

2b− a) = −a, so
an+4 = −an, hence an+8 = an.
Solution 8. a(x) = 1

1−2x , b(x) = x
(1−x)2 , c(x) = 2x

(1−2x)2 , d(x) = x2

(1−x)3 +
x

(1−x)2 , e(x) = 1
1−x2

Solution 9. The generating function is f(x) = x
1−2x+x2 = x

(1−x)2 . As in

Problem 8 this equals x+ 2x2 + 3x3 + . . . , so an = n.
Solution 11. For n = 1, . . . , 8 we have on = dn = 1, 1, 2, 2, 3, 4, 5, 6.
Solution 14. You cannot be sure. One possibility is 1, 2, 4, 8, 16, . . . , that
is, an = 2n. But the formula an = (n2 + n+ 2)/2 also yields a0 = 1, a1 = 2
and a2 = 4. But a3 = 7.
Suggestion for further study (if you know binomial coefficients): Find the
values of

(
n
0

)
+
(
n
2

)
+
(
n
4

)
for n = 1, . . . , 5 and then for n = 6. Generalization?

Reason?
Solution 15. There are various patterns. One way to do it is as follows:
notice that in a0 = 2

1 , a1 = 5
4 , a2 = 41

40 the sum of numerator and denom-
inator is always a power of three: 3, 9, 81. The exponents are 1, 2, 4, so 2n

(at least for n = 0, 1, 2). In addition, the difference between numerator and
denominator is 1. Looking for numbers N,D satisfying N + D = 32

n
and

N − D = 1 we get N = 1
2(32

n
+ 1), D = 1

2(32
n − 1). So we guess that

an = 32
n
+1

32n−1 for all n.
By a short calculation you can check that this satisfies the recurrence relation
and initial condition, so it is correct for all n.

Suggestion: The core of the calculation is 1
2

(
x+1
x−1 + x−1

x+1

)
= x2+1

x2−1 . That is,

if an = x+1
x−1 then an+1 = x2+1

x2−1 . Use this to find a closed formula for any
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initial value a0.

Solution 16. a0 = 1, an+1 = 1
2

(
an + x

an

)
.

Solution 17. The fixed point equation is x = 2
√
x, whose only positive

solution is x = 4. This suggests to compare an to 4. Using induction we get
an < 4 for all n. Also an+1−an =

√
an−
√
an−2 = (

√
an−
√
an−1)+(

√
an−1−√

an−2), so inductively an+1 ≥ an for all n. Therefore, (an) converges to 4.

Solution 18. It seems obvious that 0 <
√

6 <
√

6 +
√

6 < . . . , so a0 <
a1 < a2 < . . . . We need to show that the sequence (an) is bounded above.
What’s a good candidate for an upper bound? Let us try a solution of the
fixed point equation. Solving x =

√
6 + x we get x = 3 as unique positive

solution.
So we first show an < 3 for all n by induction. Using this we get a formal
proof that an+1 > an. Therefore the sequence converges to 3, i.e. the
infinitely nested root has the value 3.
Solution 19. No. If it was bounded then it would have to have a limit since
it is obviously increasing. For the limit we would have x = x + 1

x which is
impossible.
Other solution: a2n+1 = a2n + 2 + 1

a2n
> a2n + 2, so a2n ≥ 1 + 2n for all n. This

also shows that the sequence an diverges at least like
√
n.

Solution 20. 1√
5
α12 = F12 + 1√

5
β12 and F12 = 144, |β| < 0.7 ⇒ β2 <

0.49 < 1
2 ⇒ β12 < 1

64 ⇒ 0 < 1√
5
β12 < 1

100 , so 1√
5
α12 = 144.00 . . . .

Solution 21. a1 = 1, a2 = 2, an = an−1 + an−2 (distinguish tilings that
start with a vertical domino on the left or with two horizontal dominoes).
So an = Fn for all n.
Solution 22. For any subset A = {a1, . . . , ak} ⊂ {1, 2, . . . , b

√
nc} where

a1 < · · · < ak and k ≥ 0 consider the partition n = a1 + · · · + ak + r
where r = n − a1 − · · · − ak. The main point is to note that a1 + · · · +
ak ≤ 1 + · · · + b

√
nc = b

√
nc(b
√
nc − 1)/2 ≤

√
n(
√
n − 1)/2 < n/2 so that

r > n/2 ≥ b
√
nc where the last inequality holds for n ≥ 2. Therefore the

partition n = a1 + · · ·+ ak + r is written in increasing order, and this shows
that any two different subsets A will give different partitions. Therefore
pn ≥ 2b

√
nc.

8 Further reading

There are many good books on problem solving. Arthur Engel ’s book
(Problem-Solving Strategies) has lots of problems (and hints/solutions)
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at all levels (also on sequences).15 I also like Paul Zeitz ’s book (The Art
and Craft of Problem Solving).16 Finally, Daniel Grieser ’s (yes, that’s
me) book (Exploring Mathematics – Problem-Solving and Proof)
introduces many problem-solving techniques (with many explicitly solved
problems) and prepares at the same time for university style mathematics.

15Arthur Engel trained, very successfully, the German IMO team for many years in the
1970s and 1980s.

16Paul Zeitz has trained, very successfully, the US IMO team.
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