
CONVEXITY AND ITS APPLICATIONS TO INEQUALITIES

1. Basics

Definition: A function f(x) is called convex on an interval (a, b) if

f(x) + f(y)

2
≥ f

(
x+ y

2

)
(1.1)

holds for all numbers x, y from (a, b). If the opposite inequality holds in (1.1) then the
function f is called concave.

Fact 1. The function1 f(x) is convex on (a, b) if and only if f ′′(x) ≥ 0 for all x from (a, b) (if the
opposite inequality holds, i.e., f ′′(x) ≤ 0 then f is concave).

Fact 2. f(x) is increasing on (a, b), i.e., f(x2) > f(x1) for all x2 > x1 from (a, b), if and only if
f ′(x) > 0 for all x in (a, b). f(x) is decreasing on (a, b), i.e., f(x2) < f(x1) for all x2 > x1
from (a, b), if and only if f ′(x) < 0 for all x in (a, b).

Exercise 1. Show that if p > 0 then f(x) = xp is increasing for x ≥ 0.

Exercise 2. Show that f(x) = xp is convex for x > 0 if p ≥ 1, and it is concave for x > 0 if 0 < p ≤ 1.
What happens when p < 0?

Problem 1. Assume f(x) is convex on (a, b). Then show that for any real number p in (a, b) we have
f(x) ≥ f(p) + f ′(p)(x − p) for all x (this problem is known as the convex function lies
above its tangent line).

Problem 2. If f(x) is convex on (a, b) show that for any real number p from (a, b) the function

ϕ(t) = f(p+ t) + f(p− t)

is increasing for t ≥ 0 while both points p+ t and p− t remain in the interval (a, b) (this
is the simplest version of Karamata’s inequality). What happens when f is concave?

Problem 3. If f(x) is convex on (a, b) then show that for any numbers x1, . . . , xn from (a, b), and any
nonnegative numbers α1, . . . , αn ≥ 0 with α1 + . . .+ αn = 1 we have

α1f(x1) + . . .+ αnf(xn) ≥ f (α1x1 + . . .+ αnxn)

(Jensen’s inequality). What happens if f is concave?

Problem 4∗. If f(x) is convex for x > 0 then show that for any positive numbers x1, . . . , xn, y1, . . . , yn >
0 we have

B(x1, y1) + . . .+B(xn, yn) ≥ B(x1 + . . .+ xn, y1 + . . .+ yn).

where B(x, y) = yf (x/y). What happens when f is concave? (Hint: first show the
inequality when n = 2)

1In what follows we are assuming that all our functions f(x) are twice continuously differentiable so that we
can write the derivatives of f without thinking if such exist
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2. Some olympiad problems

Problem 1. Let a, b, c > 0 be such that a2 + b2 + c2 = 3. Show that

1

a3 + 2
+

1

b3 + 2
+

1

c3 + 2
≥ 1.

Problem 2. Let a, b, c, d, e ≥ 0 be such that

1

4 + a
+

1

4 + b
+

1

4 + c
+

1

4 + d
= 1.

Show that

a

4 + a2
+

b

4 + b2
+

c

4 + c2
+

d

4 + d2
+

e

4 + e2
≤ 1.

Problem 3. Let a, b, c be positive numbers so that a+ b+ c = 1. Prove

10(a3 + b3 + c3)− 9(a5 + b5 + c5) ≥ 1.

Problem 4. Let a, b, c be positive numbers such that a2 + b2 + c2 = 12. Find the maximal possible
value of

a(b2 + c2)1/3 + b(c2 + a2)1/3 + c(a2 + b2)1/3.

Problem 5. For any nonnegative x1, . . . , xn ≥ 0 with
∑n

k=1 xk = 1 show that

n∑
k=1

xk(1− xk)2 ≤
(

1− 1

n

)2

.

Problem 6. Let a, b, c be positive real numbers. Prove that

a√
a2 + 8bc

+
b

b2 + 8ca
+

c

c2 + 8ab
≥ 1.

Problem 7. Let a, b, c be positive numbers. Show that

(b+ c− a)2

a+ (b+ c)2
+

(a+ b− c)2

c+ (a+ b)2
+

(a+ c− b)2

b+ (a+ c)2
≥ 3

5
.

Problem 8 Let a, b, c be positive real numbers such that abc = 1. Prove that

1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)
≥ 3

2
.

Problem 9. For any a, b, c > 0 prove

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

Problem 10. Prove for all reals a, b, c ≥ 0:

(a+ b+ c)2

3
≥ a
√
bc+ b

√
ac+ c

√
ab.

Problem 11. Prove for all positive real numbers a, b, c:

9

a+ b+ c
≤ 2

(
1

a+ b
+

1

b+ c
+

1

c+ a

)
.
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3. Some classical inequalities

Problem 1. Show that for any nonnegative numbers x1, . . . , xn we have

x1 + . . .+ xn
n

≥ (x1 · · ·xn)1/n (AM-GM: arithmetic-geometric mean inequality).

Problem 2. Show that for any x, y ≥ 0 and any α, β ≥ 0 with α+ β = 1 we have

αx+ βy ≥ xαyβ (Young’s inequality).

Problem 3. Show that if α ≥ 1 and x ≥ −1 then

(1 + x)α ≥ 1 + αx (Bernoulli’s inequality),

while for 0 ≤ α ≤ 1 the opposite inequality holds.

Problem 4. Show that for any nonnegative numbers x1, . . . , xn, y1, . . . , yn ≥ 0 we have n∑
j=1

xjyj

2

≤

 n∑
j=1

x2j

 n∑
j=1

y2j

 (Cauchy–Schwarz inequality).

Problem 5. Show that for any positive numbers p, q > 0 with 1
p+ 1

q = 1, and any nonnegative numbers

x1, . . . , xn, y1, . . . , yn ≥ 0 we have

n∑
j=1

xjyj ≤

 n∑
j=1

xpj

1/p n∑
j=1

yqj

1/q

(Hölder’s inequality).

Problem 6. Show that for any 1 ≤ p < ∞, and any positive numbers x1, . . . , xn, y1, . . . , yn ≥ 0 we
have n∑

j=1

(xj + yj)
p

1/p

≤

 n∑
j=1

xpj

1/p

+

 n∑
j=1

ypj

1/p

(Minkowski inequality).

Problem 7. Let x1, . . . , xn be positive numbers. Show that the following function

f(p) =

 n∑
j=1

xpj

1/p

is decreasing for p ≥ 1, and increasing for 0 < p ≤ 1.

Problem 8∗ Let x1, . . . , xn be positive numbers. Show that the following function

f(p) =

(∑n
j=1 x

p
j

n

)1/p

is nondecreasing.

Problem 9∗. Show that for any 2 ≤ p < ∞, and any positive numbers x1, . . . , xn, y1, . . . , yn ≥ 0 we
have

n∑
j=1

(xj + yj)
p +

n∑
j=1

|xj − yj |p ≤
 n∑
j=1

xpj

1/p

+

 n∑
j=1

ypj

1/p

p

+

∣∣∣∣∣∣∣
 n∑
j=1

xpj

1/p

−

 n∑
j=1

ypj

1/p
∣∣∣∣∣∣∣
p

(Hanner’s inequality).
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4. Problems that originate from a research

I am not assuming that one should solve all these problems, however, one can try to solve
some particular cases.

Problem 0. Show that

x3/2 − 1√
2

(2x−
√
x2 + y2)

√
x+

√
x2 + y2 ≤ 3

8

y2√
x

for all x, y ≥ 0.

(Improving Beckner’s bound).
Problem 1. For any positive numbers a, b show that

a ln a+ b ln b

2
−
(
a+ b

2

)
ln

(
a+ b

2

)
≤ (a− b)2

16

(
1

a
+

1

b

)
(Log-Sobolev inequality).

Problem 2∗. Let 1 < p ≤ q <∞. Show that
∣∣∣a+

√
p−1
q−1

∣∣∣q +
∣∣∣a−√p−1

q−1

∣∣∣q
2


1/q

≤
(
|a+ 1|p + |a− 1|p

2

)1/p

holds for all real a

(Hypercontractivity). Try p = 2 and q = 4.

Problem 3. Let 1 ≤ p ≤ 2. Show that for all 0 ≤ a ≤ 1 we have

a2 + (p− 1) ≤
(

(1 + a)p + (1− a)p

2

)2/p

(Hausdorff–Young inequality: a simplified version).

Problem 4. Let real numbers x1, . . . , xn be such that

1

n

n∑
j=1

xj = 1.

Show that

1

n

n∑
j=1

e−x
2
j/n ≤ e−1/n

(Chang–Wilson–Wolff’s superexponential bound in arbitrary dimensions).

Problem 5. For all x from [0, 1] and all integers 0 ≤ k ≤ n we have

(2 + 2xk − 4xn + 2x2n−k)n ≤ (2− xk)2n−k

(a mathoverflow question).

Problem 6. For any numbers 1 ≤ s ≤ λ, and any p ≥ 1 show that

λp − 1

λp − λ
(sp − s) ≤ sp − 1.

(Lower bounds for Hardy–Littlewood maximal functions).

Problem 7∗. Find the largest power p > 0 such that

(a+ b+ c)p ≤ (1 + ap)(1 + bp)(1 + cp)

holds for all nonnegative numbers a, b, c ≥ 0. (Kane–Tao: a problem about efficient
clustering).
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