COMPUTING SUMS AND THE AVERAGE VALUE OF THE DIVISOR
FUNCTION

ABSTRACT. We introduce a method for computing sums of the form

> fn)

n<zx

where f(n) is “nice”. We apply this method to study the average value of d(n), where d(n)
is the number of positive divisors of n.

1. INTRODUCTION: COMPUTING SUMS
Let x > 1 be an integer. Consider the problem of summing

1+2+3+---+(I—1)+x:in22n.
n=1

n<x

We will compute this sum in two different ways. First, we observe that if

S:Zn,

n<w

then
S=1+2 +3 +4 +-+ (-1 +z
S=z+@-1+@-2)+(@-3)+ -+ 2+ 1.

Summing the left hand side and the right hand side, we have that
2S =z(z+1).

Solving for S, we have that

B z(z+1)  a?
S—Zn— —2+

O R

As an example,

100
14+24+3+4+5+6+7+---+99+100=) i

=1

1 101
= 100> 101 = 5050.

To describe the second method of computing S, we will use the fact that

SzZn

n<x
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is approximately equal to the area under the curve f(n) = n from n = 1 to n = z. Note
that this area, which we write as
x
/ ¢ dt,
1

|

22
(Think of the area under f(n) = n as a right isosceles triangle with the two equal sides
of length z.) We are almost there; we are just missing 5 + % To recover this last bit, we

introduce the floor function

is equal to

|t] = largest integer n such that n <t

For example,
1] =1, [2999] =2, |n|=23.

(We sometimes call [z] the integer part of z.) If we write A for the area under the curve
f(t) =t from t =1 to t = x, then we find that

S—A:1+/1ztdt—/lmw dt:1+/1$(t—w)dt.

That is, S — A equals the area under the curve g(t) =t — [¢] from ¢t = 1 up to t = x. Now,

: o= [t g z—1 z 1
t—t])dt=1 t—)dt=1 =1 — 4=
=1 +Z/ N e

which is the remaining piece.

This technique of relating a sum to an integral (i.e., area under a curve) is a very important
technique in modern mathematics because we have much better knowledge of how to compute
integrals than we do sums.

Theorem 1.1 (Euler’s summation formula). Suppose that f(t) is a function whose derivative
f'(t) is continuous on the interval 1 <t < x, where x is an integer. Then

FA + Q)+ @)+ + fla— 1)+ f(z)=>_ f(n)

n<x

equals

f+ [ o der [ s a
1 1
Recall that f/(t), the derivative of f, is the slope of f at the point (¢, f(t)).
Exercise 1.2. Show that
2 2 2 2 2 2 . @b P
1242 24y (r—1 =S =T
+ 22+ 3+ 4+ (- 1)+ n +5

3 +

T
6
n<x
for any integer x > 1. (Hint: If f(¢) = ¢?, then [ ¢* dt = (* —1)/3 and f'(t) = 2t on the
interval 1 <t < uz.)
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Exercise 1.3. Show that

3, 93 93 43 5, 3_N\~,s_ ot 2t 2P
P2+ 44824+ (x—1)P+a —;n =TTt
for any integer > 1. (Hint: If f(t) = ¢3, then [ t* d¢t = (z* —1)/4 and f'(¢) = 3¢* on the

interval 1 <t < z.)

2. A IMPORTANT EXAMPLE: THE HARMONIC SERIES

One of the most important sums in mathematics is the harmonic sum

TIELIIE S S —Zl
2 3 4 r—1 x “~n

(Remember, we take = to be a positive integer here.) We can now compute this sum ezactly
using Theorem 1.1 and the fact that
“1
/ —dt = Inx,
1t

where In z is the natural logarithm of x. Recall that

logo(z) = -2 In 10 = 2.30258509299405
0810(%) = 175 nl0=2.
Exercise 2.1. Show that if n > 2 is an integer and 7 is the number of digits in n, then
R Inz
n —_——
In10

Using Theorem 1.1, we have that

(2.1) _1+/ —dt — / Y~ —|—1—/t_t2mdt.
n<x 1

Exercise 2.2. Let x > 2 be an integer. Using the fact that

/—dt—l——

1 Tt— |t
—<1—/ Hdt<1.
t?‘
1

x
(Hint: Show that 0 <t — |t] < 1.)

Notation 2.3. If g(x) > 0 for all x > a, we say that
f(z) =0O(g(x)) (read: “f(z) is big oh of g(x)”)

to mean that |f(z)/g(x)| is bounded for x > a. That is, there exists a constant M > 0 such
that

show that

|f(z)] < M- g(z) for all z > a.
An equation of the form
f(x) = h(zx) + O(g(x))
means that f(z) — h(z) = O(g(z)). If f(t) = O(g(t)) for t > a, then [’ f(¢) dt
O( [ g(t) dt) for z > a.

3



Exercise 2.4. Prove the following:
e sin(x) = O(1) for =z > 0.
e logz = O(x) for x > 1.
e Va+1=0(/z) for x> 1.
o [z| =x+0(Q1) for z > 0.

Exercise 2.2 shows us that

<Z%—lnx<1.

n<x

SHE

for all integers x > 2. Thus

1
20
n<x

is very-well approximated by In x for all values of x > 2, but for all integers x > 2,

Z% # Inx.

n<x

Exercise 2.5. Show that if x > 1, then

Tt— |t 1
1—/ 2Hdt:fy+0<—>,
1 t T
where v = 0.577215664901 . .. Thus

Z%:logas—%’y—l—O(i)

n<x

for all x > 1.

Exercise 2.6. Show that as x grows, the quantity

Z%—lnx

n<x

approaches 7.

Exercise 2.7. Determine whether v can be expressed as the ratio of two integers a/b, where
a # b # 0 and a has no prime factors in common with b.
3. THE AVERAGE BEHAVIOR OF THE DIVISOR FUNCTION

Let n > 2 be a positive integer. In the study of numbers, it is very important to understand
the number of positive integers that divide n. To this end, we define

7(n) = the number of distinct positive integers d such that d divides n.

For example, 7(1) = 1, 7(2) = 2 because 1 and 2 divide 2, 7(3) = 2 because 1 and 3 divide
3, 7(4) = 3 because 1 and 2 and 4 divide 4, and so on. Let’s explore the behavior of 7(n).

Exercise 3.1. Compute 7(n) for all integers 1 < n < 100. Try to find some patterns.

Exercise 3.2. Suppose that p is prime. What is 7(p?)? 7(p*)? What is 7(p*) for any
positive integer k > 17
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Let p1 =2, po =3, p3 =5, ps = 7, and in general, let p,, denote the n-th prime. Define

N = P1P2Ps - Pn1Pn-
Exercise 3.3. What is 7(3#)? 7(4#)7 7(5#)7 How large is 7(n#) for any integer n > 17

The preceding exercises show that 7(n) behaves pretty wildly. Notice that 7(p) = 2 for
every prime p, but 7(n#) grows very quickly. This begs the question:

How do we study 7(n)?
We can take a cue from statistics and study the mean value of 7(n). That is, we study
1
—>_ ()
n<x

instead of 7(n).
We now introduce the notation d | n to say that d divides n. One way that we can write

T(n) is
T(n) = Z 1.

din

That is, we sum 1 for every distinct divisor d of n. Now,

=S

n<z n<z d|n

We now observe that divisors come in pairs: if d | n, then we can write n = dq for some
integer ¢ > 1. (This might be the same as d if, say, n = d*.) Thus we can rewrite the sum
as

(3.1) ézf(n) — é d oL

n<lx s
dg<zx
This can be interpreted as a sum extended over points with integer coordinates in the dg-
plane; we call such points lattice points. The lattice points in dg = n lie on a hyperbola,
so the inner sum in counts the number of lattice points which lie on the hyperbolas
dg=1,dg=2,dq=3,...,dqg = |z].

For each fixed d < x, we can count first those lattice points on the horizontal line segment
1 < ¢ < x/d, and then sum over all d < z. Therefore,

(3.2) iZT(n) _ éz S

n<z d<z gq<z/d
Now,
T X
2 1=lal=arom,
SO B ) ]
Z Z 122 (g—l—O(l)) :$ZE+O<21> ::EZE—FO(x).
d<z g<z/d d<zx d<zx d<x d<x
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But we already proved that

Z%l:loga:—l—ijO(i).

d<zx
Thus
ZT(H) = Z Z l=xzlnz+ O(z),
n<z d<z g<z/d
S0 )
. ZT(N) =Inz+ O(1).
n<x

We conclude
Theorem 3.4. The mean value of T(n) is Inn.

Exercise 3.5. Show that for z > 1,

Zlnn:/ Int dt+/ ] dt
1 1 t

7 .

:mlogzzc—x—i—l—I—/JC
=zlogr —x + O(loglx).
(Hint: Use the fact that [’In¢ dt =zlnz — 2+ 1 and (Int) = 1/¢.)
Exercise 3.6. Show that as x grows,

i Z(T(n) —Inn)

n<x

approaches zero.

Define
l=1x2x3x4x---x(x—1)xuz.

Exercise 3.7. Show that In(z!) = zlnz —z + O(Inx).
Exercise 3.8. Show that
1 In2 1
In(z!) =zlhe —z— 511191;4— el —i—O(—).
x

O

So, as x grows, z! approaches
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