
COMPUTING SUMS AND THE AVERAGE VALUE OF THE DIVISOR
FUNCTION

Abstract. We introduce a method for computing sums of the form∑
n≤x

f(n)

where f(n) is “nice”. We apply this method to study the average value of d(n), where d(n)
is the number of positive divisors of n.

1. Introduction: Computing sums

Let x ≥ 1 be an integer. Consider the problem of summing

1 + 2 + 3 + · · ·+ (x− 1) + x =
x∑

n=1

n =
∑
n≤x

n.

We will compute this sum in two different ways. First, we observe that if

S =
∑
n≤x

n,

then

S = 1 + 2 + 3 + 4 + · · ·+ (x− 1) + x

S = x+ (x− 1) + (x− 2) + (x− 3) + · · ·+ 2 + 1.

Summing the left hand side and the right hand side, we have that

2S = x(x+ 1).

Solving for S, we have that

S =
∑
n≤x

n =
x(x+ 1)

2
=
x2

2
+
x

2
.

As an example,

1 + 2 + 3 + 4 + 5 + 6 + 7 + · · ·+ 99 + 100 =
100∑
i=1

i =
100× 101

2
= 5050.

To describe the second method of computing S, we will use the fact that

S =
∑
n≤x

n
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is approximately equal to the area under the curve f(n) = n from n = 1 to n = x. Note
that this area, which we write as ∫ x

1

t dt,

is equal to

x2

2
− 1

2
.

(Think of the area under f(n) = n as a right isosceles triangle with the two equal sides
of length x.) We are almost there; we are just missing x

2
+ 1

2
. To recover this last bit, we

introduce the floor function

btc = largest integer n such that n ≤ t

For example,

b1c = 1, b2.999c = 2, bπc = 3.

(We sometimes call bxc the integer part of x.) If we write A for the area under the curve
f(t) = t from t = 1 to t = x, then we find that

S − A = 1 +

∫ x

1

t dt−
∫ x

1

btc dt = 1 +

∫ x

1

(t− btc) dt.

That is, S − A equals the area under the curve g(t) = t− btc from t = 1 up to t = x. Now,∫ x

1

(t− btc) dt = 1 +
x−1∑
i=1

∫ i+1

i

(t− i) dt = 1 +
x−1∑
i=1

1

2
= 1 +

x− 1

2
=
x

2
+

1

2
,

which is the remaining piece.
This technique of relating a sum to an integral (i.e., area under a curve) is a very important

technique in modern mathematics because we have much better knowledge of how to compute
integrals than we do sums.

Theorem 1.1 (Euler’s summation formula). Suppose that f(t) is a function whose derivative
f ′(t) is continuous on the interval 1 ≤ t ≤ x, where x is an integer. Then

f(1) + f(2) + f(3) + · · ·+ f(x− 1) + f(x) =
∑
n≤x

f(n)

equals

f(1) +

∫ x

1

f(t) dt+

∫ x

1

(t− btc)f ′(t) dt.

Recall that f ′(t), the derivative of f , is the slope of f at the point (t, f(t)).

Exercise 1.2. Show that

12 + 22 + 32 + 42 + · · ·+ (x− 1)2 + x2 =
∑
n≤x

n2 =
x3

3
+
x2

2
+
x

6

for any integer x ≥ 1. (Hint: If f(t) = t2, then
∫ x

1
t2 dt = (x3 − 1)/3 and f ′(t) = 2t on the

interval 1 ≤ t ≤ x.)
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Exercise 1.3. Show that

13 + 23 + 33 + 43 + · · ·+ (x− 1)3 + x3 =
x∑

n=1

n3 =
x4

4
+
x3

2
+
x2

4

for any integer x ≥ 1. (Hint: If f(t) = t3, then
∫ x

1
t3 dt = (x4 − 1)/4 and f ′(t) = 3t2 on the

interval 1 ≤ t ≤ x.)

2. A important example: The harmonic series

One of the most important sums in mathematics is the harmonic sum

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

x− 1
+

1

x
=

x∑
n=1

1

n
.

(Remember, we take x to be a positive integer here.) We can now compute this sum exactly
using Theorem 1.1 and the fact that ∫ x

1

1

t
dt = lnx,

where lnx is the natural logarithm of x. Recall that

log10(x) =
lnx

ln 10
, ln 10 = 2.30258509299405 . . .

Exercise 2.1. Show that if n ≥ 2 is an integer and n̂ is the number of digits in n, then∣∣∣n̂− lnx

ln 10

∣∣∣ ≤ 1.

Using Theorem 1.1, we have that

(2.1)
∑
n≤x

1

n
= 1 +

∫ x

1

1

t
dt−

∫ x

1

t− btc
t2

dt = lnx+ 1−
∫ x

1

t− btc
t2

dt.

Exercise 2.2. Let x ≥ 2 be an integer. Using the fact that∫ x

1

1

t2
dt = 1− 1

x
,

show that
1

x
< 1−

∫ x

1

t− btc
t2

dt < 1.

(Hint: Show that 0 ≤ t− btc ≤ 1.)

Notation 2.3. If g(x) > 0 for all x ≥ a, we say that

f(x) = O(g(x)) (read: “f(x) is big oh of g(x)”)

to mean that |f(x)/g(x)| is bounded for x ≥ a. That is, there exists a constant M > 0 such
that

|f(x)| ≤M · g(x) for all x ≥ a.

An equation of the form
f(x) = h(x) +O(g(x))

means that f(x) − h(x) = O(g(x)). If f(t) = O(g(t)) for t ≥ a, then
∫ x

a
f(t) dt =

O(
∫ x

a
g(t) dt) for x ≥ a.
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Exercise 2.4. Prove the following:

• sin(x) = O(1) for x ≥ 0.
• log x = O(x) for x ≥ 1.
•
√
x+ 1 = O(

√
x) for x ≥ 1.

• bxc = x+O(1) for x ≥ 0.

Exercise 2.2 shows us that
1

x
<
∑
n≤x

1

n
− lnx < 1.

for all integers x ≥ 2. Thus ∑
n≤x

1

n

is very-well approximated by lnx for all values of x ≥ 2, but for all integers x ≥ 2,∑
n≤x

1

n
6= lnx.

Exercise 2.5. Show that if x ≥ 1, then

1−
∫ x

1

t− btc
t2

dt = γ +O
(1

x

)
,

where γ = 0.577215664901 . . . Thus∑
n≤x

1

n
= log x+ γ +O

(1

x

)
for all x ≥ 1.

Exercise 2.6. Show that as x grows, the quantity∑
n≤x

1

n
− lnx

approaches γ.

Exercise 2.7. Determine whether γ can be expressed as the ratio of two integers a/b, where
a 6= b 6= 0 and a has no prime factors in common with b.

3. The average behavior of the divisor function

Let n ≥ 2 be a positive integer. In the study of numbers, it is very important to understand
the number of positive integers that divide n. To this end, we define

τ(n) = the number of distinct positive integers d such that d divides n.

For example, τ(1) = 1, τ(2) = 2 because 1 and 2 divide 2, τ(3) = 2 because 1 and 3 divide
3, τ(4) = 3 because 1 and 2 and 4 divide 4, and so on. Let’s explore the behavior of τ(n).

Exercise 3.1. Compute τ(n) for all integers 1 ≤ n ≤ 100. Try to find some patterns.

Exercise 3.2. Suppose that p is prime. What is τ(p2)? τ(p3)? What is τ(pk) for any
positive integer k ≥ 1?
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Let p1 = 2, p2 = 3, p3 = 5, p4 = 7, and in general, let pn denote the n-th prime. Define

n# = p1p2p3 · · · pn−1pn.

Exercise 3.3. What is τ(3#)? τ(4#)? τ(5#)? How large is τ(n#) for any integer n ≥ 1?

The preceding exercises show that τ(n) behaves pretty wildly. Notice that τ(p) = 2 for
every prime p, but τ(n#) grows very quickly. This begs the question:

How do we study τ(n)?

We can take a cue from statistics and study the mean value of τ(n). That is, we study

1

x

∑
n≤x

τ(n)

instead of τ(n).
We now introduce the notation d | n to say that d divides n. One way that we can write

τ(n) is

τ(n) =
∑
d|n

1.

That is, we sum 1 for every distinct divisor d of n. Now,

1

x

∑
n≤x

τ(n) =
1

x

∑
n≤x

∑
d|n

1.

We now observe that divisors come in pairs: if d | n, then we can write n = dq for some
integer q ≥ 1. (This might be the same as d if, say, n = d2.) Thus we can rewrite the sum
as

(3.1)
1

x

∑
n≤x

τ(n) =
1

x

∑
d,q

dq≤x

1.

This can be interpreted as a sum extended over points with integer coordinates in the dq-
plane; we call such points lattice points. The lattice points in dq = n lie on a hyperbola,
so the inner sum in (3.1) counts the number of lattice points which lie on the hyperbolas
dq = 1, dq = 2, dq = 3, . . . , dq = bxc.

For each fixed d ≤ x, we can count first those lattice points on the horizontal line segment
1 ≤ q ≤ x/d, and then sum over all d ≤ x. Therefore,

(3.2)
1

x

∑
n≤x

τ(n) =
1

x

∑
d≤x

∑
q≤x/d

1.

Now, ∑
q≤x/d

1 =
⌊x
d

⌋
=
x

d
+O(1),

so ∑
d≤x

∑
q≤x/d

1 =
∑
d≤x

(x
d

+O(1)
)

= x
∑
d≤x

1

d
+O

(∑
d≤x

1
)

= x
∑
d≤x

1

d
+O(x).
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But we already proved that ∑
d≤x

1

d
= log x+ γ +O

(1

x

)
.

Thus ∑
n≤x

τ(n) =
∑
d≤x

∑
q≤x/d

1 = x lnx+O(x),

so
1

x

∑
n≤x

τ(n) = lnx+O(1).

We conclude

Theorem 3.4. The mean value of τ(n) is lnn.

Exercise 3.5. Show that for x ≥ 1,∑
n≤x

lnn =

∫ x

1

ln t dt+

∫ x

1

t− btc
t

dt

= x log x− x+ 1 +

∫ x

1

t− btc
t

dt

= x log x− x+O(log x).

(Hint: Use the fact that
∫ x

1
ln t dt = x lnx− x+ 1 and (ln t)′ = 1/t.)

Exercise 3.6. Show that as x grows,

1

x

∑
n≤x

(τ(n)− lnn)

approaches zero.

Define
x! = 1× 2× 3× 4× · · · × (x− 1)× x.

Exercise 3.7. Show that ln(x!) = x lnx− x+O(lnx).

Exercise 3.8. Show that

ln(x!) = x lnx− x− 1

2
lnx+

ln 2π

2
+O

(1

x

)
.

So, as x grows, x! approaches √
2π

x

(x
e

)x
.
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