
SOLVING THE CONGRUENCE P(x) ≡ 0 mod N.

Dmitry FUCHS

A lot is said and written about solving algebraic equations P (x) = 0 where P is a
polynomial. We will consider today a seemingly similar, but actually very much different
problem. We suppose that P is a polynomial with integer coefficients, and want to find
those integers x for which P (x) is divisible by N .

1. A preparation. We will begin with several statements which are not related
directly to our problem, but will be useful to us. Probably, the members of the circle are
familiar with all, or almost all, of them, but I feel obliged to walk through them.

First, the notation (it, actually, was used in the title): for integers a, b, and n > 0, the
formula a ≡ b mod n (read as “a is congruent to b modulo n”) means “a − b is divisible
by n”. For example, 17 ≡ 9 mod 4, −12 ≡ 2 mod 7, but 16 6≡ 8 mod 5. In particular,
a ≡ 0 mod n means that a is divisible by n. Mark the following obvious properties of
congruences: if a ≡ b mod n and c ≡ d mod n, then a+c ≡ b+d mod n, a−b ≡ b−d mod n,
and a · c ≡ b · d mod n.

Second, if we do not distinguish between integers congruent modulo n, then there will
be precisely n “different” numbers: 0, 1, 2, . . . , n− 1. I mean that any integer is congruent
modulo n to precisely one of these numbers. In connection with this, we will use the word
“residue”: if a is congruent modulo n to b, 0 ≤ b ≤ n − 1, then we will say that b is the
residue of a modulo n. (In particular, each of the numbers 0, 1, . . . , n− 1 is the residue of
its own.) We can add, subtract and multiply residues. For example, the residue of 4 + 5
modulo 7 is 2, so we say, that the residue 2 is the sum of the residues 4 and 5 modulo 7.
Similarly, the residue 6 is the product of the residues 4 and 5 modulo 7.

Third, there is such a thing as division modulo a prime number. Let p be a prime
(number), and let a and b are integers such that a is not divisible by p. Then it is possible
to “divide a by b modulo p. More precisely: there exists a unique modulo p integer c such
that a · c ≡ b mod p. Indeed, consider the integers

0 · a, 1 · a, 2 · a, . . . , (p− 1) · a. (∗)

The number of this integers is p, and no two of them have the same residue modulo p (if
k · a ≡ ` · a mod p and 0 < ` < k < p, then (k− `) · a is divisible by p; since p is prime and
a is not divisible by p, then k− ` should be divisible by p, which is obviously not possible).
Since there are precisely p different residues modulo p, there is, among the residues (∗)
precisely one, which coincides with the residue of b. For example, how to divide 3 by 5
modulo 7? We consider the 7 integers 0, 5, 10, 15, 20, 25, 30 and locate the one of them
which is congruent to 3 modulo 7. It is 10 = 2 · 5. Thus, the result of division of 3 by 5
modulo 7 is 2.

To make this computation simpler, we can find the “inverse” residues: 1 divided by
all the other non-zero residues; if p is fixed, we may use for the residue “1 divided by the
residue a” the “bar-notation” a. For example, modulo 7, 1, 2, 3, 4, 5, 6 are 1, 4, 5, 2, 3, 6;
modulo 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are 1, 6, 4, 3, 9, 2, 8, 7, 5, 10. If we know this, we can
divide any residue (modulo a prime) by any non-zero residue: to divide b by a is the same
as to multiply b by a. For example, let us divide 5 by 7 modulo 11. Since 7 = 8, it is the
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same as multiply 5 by 8 modulo 11. But 5 · 8 = 40 ≡ 7 mod 11, so the result of division is
7. (Indeed, 7 · 7 = 49 ≡ 5 mod 11.)

A couple of additional remarks not concerning congruences. Let P (x) be a polynomial
with integer coefficients,

P (x) = anx
n + an−1x

n−1 + . . . + a2x
2 + a1x + a0.

Then the derivative of P (x),

P ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + . . . + 2a2x + a1

is also a polynomial with integer coefficients. The same is true for the second derivative,

P ′′(x) = n(n− 1)anx
n−2 + (n− 1)(n− 2)an−1x

n−3 + . . . + 6a3x + 2a2,

but actually we have more: all the coefficients of this polynomial are even (since all the

numbers
k(k − 1)

2
=

(
k

2

)
are integers); thus, not only P ′′(x), but also

P ′′(x)

2
is a polyno-

mial with integer coefficients. Similarly, all the coefficients of the polynomial

P ′′′(x) = n(n− 1)(n− 2)anx
n−2 + (n− 1)(n− 2)(n− 3)an−1x

n−3 + . . . + 24a4x + 6a3

are divisible by 3! = 6, so
P ′′′(x)

3!
is a polynomial with integer coefficients, and so on:

P (k)(x)

k!
(where P (k)(x) denotes the k-th derivative of the polynomial P (x)) is, for every

k, a polynomial with integer coefficients.
And the last thing I want to mention here is the Taylor formula: for a polynomial

P (x),

P (a + h) = P (a) + P ′(a)h +
P ′′(a)

2
h2 +

P ′′′(a)

3!
h3 + . . .

This formula is well known in elementary calculus. It is important that for polynomials
the sum in the right hand side has finitely many terms: for a degree n polynomial P (x) the
derivatives starting with the (n+ 1)-st one are all zeroes. (For those who do not know this
formula, here is a brief proof. Since every polynomial is the sum of powers xn with some
coefficients, it is sufficient to prove it for the polynomial P (x) = xn. For this polynomial,

P (a + h) = (a + h)n = an + nan−1h +
n(n− 1)

2
an−2h2 +

n(n− 1)(n− 2)

3!
an−3h3 + ...

But an = P (a), nan−1a
n−1 = P ′(a), n(n−1)an−2a

n−2 = P ′′(a), n(n−1)(n−2)an−3a
n−3

= P ′′′(a), and so on, so our formula holds in this case.)

2. The problem. Let P (x) be a polynomial with integer coefficients, and let N ≥ 2
be an integer. We are looking for those integers x for which P (x) ≡ 0 mod N . First of
all, it is obvious that if x is a solution of our problem and y ≡ x mod N , then y is also
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a solution of our problem. Thus, our solutions will be residues modulo N ; it is possible
to say that we are looking for solutions only among the numbers 0, 1, 2, . . . , N − 1. What
can be the number of solutions? We can say only that if N is prime that the number
of solutions cannot exceed the degree of the polynomial. (We do not need this fact, and
will not prove it, but the proof is the same as in elementary algebra; we need to use the
division modulo p, then we prove that if P (x) has degree n and P (a) ≡ 0 mod p, then,
modulo p, P (x) = (x−a) ·Q(x) where Q(x) is a polynomial of degree n−1 less the degree
of P (x); we can assume, by induction, that the congruence Q(x) ≡ 0 mod p has at most
n − 1 solutions, and the congruence P (x) ≡ 0 mod p has the same solutions and also a.)
If N is not prime, then the number of solutions may exceed the degree of the polynomial;
for example, the congruence x2 − 1 ≡ 0 mod 8 has 4 solutions: 1, 3, 5, and 7.

3. A Chinese contribution. One of the oldest results in Number Theory is the
so-called Chinese Remainder Theorem∗. For example, consider the following problem; find
all integers x such that x ≡ 3 mod 5 ands x ≡ 2 mod 7. One of solutions is 23, and this
is a unique solution modulo 5 · 7 = 35; so all solutions are . . . ,−12, 23, 58, 91, . . ., that is,
23 + k · 35 where k is an arbitrary integer. The theorem says that if k and ` are relatively
prime, then, for arbitrary a and b, the system of congruences x ≡ a mod k, x ≡ b mod `
has a unique solution modulo mn. (The proof is basically the same as for the existence of
division modulo a prime. We consider integers

a, a + k, a + 2k, a + 3k, . . . , a + (`− 1)k.

All of them satisfy the first congruence, there are ` of them, and all of them have different
residues modulo `. Indeed, if 0 ≤ s < t ≤ `− 1, then if (a + tk)− (a + sk) = (t− s)k were
divisible by `, then, since k and ` are relatively prime, t−s would be divisible by ` which is
not possible: 0 < t− s < `. Hence all the ` numbers have different residues modulo `, and,
since there are precisely ` different residues modulo `, there precisely one s, 0 ≤ s ≤ `− 1
such that the residue of a + sk modulo ` is b: this provides a unique modulo k` solution
to our system: a + sk.

Now, if our N is a product of two relatively prime numbers, N = k`, then any y
and z such that P (y) ≡ 0 mod k and P (z) ≡ 0 mod ` produce a solution modulo N : it
is sufficient to take an x such that x ≡ y mod k and x ≡ z mod `. Indeed, since P (x) is
divisible by k and by `, it is also divisible by k` = N .

Now, an arbitrary N has a prime factorization: N = pk1
1 pk2

2 pk3
3 . . . pkr

r , where p1, p2, p3,
. . . , pr are different prime numbers. Since pk1

1 is relatively prime to pk2
2 pk3

3 . . . pkr
r , it is

sufficient to solve the problem modulo pk1
1 and pk2

2 pk3
3 . . . pkr

r . Since pk2
2 is relatively prime

with pk3
3 . . . pkr

r , It is sufficient to solve the problem modulo pk1
1 , pk2

2 and pk3
3 . . . pkr

r ; and so
on. The final result: we need to solve our problem modulo pk1

1 , pk2
2 , . . . , pkr

r : every set of
solutions of these r problems will provide a unique, modulo N solution of the congruence
modulo N .

∗ Why this name? Different sources provide different explanations for this. One states
that the name of the discoverer is too difficult for pronunciation. Another explanation,
which seems more plausible to me, states that the fact was known in China many centuries
ago, but it is difficult to find out who was the first discoverer.
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We arrive at a conclusion: the only case we need to consider is the case when N is a
power of prime.

From now on, we fix a prime number p and assume that N is a power of p.

4. The case of prime N. First, we need to consider the case when N is p. This
case, which may seem the easiest, is actually the most difficult. I can say that there are
no sophisticated means to solve the congruence P (x) ≡ 0 mod p. All we can offer is to
plug for x, one by one, the numbers 0, 1, 2, . . . , p− 1. (It may be helpful to know that the
number of solutions does not exceed the degree of P (x).) If p is not very big, we can do
this by hand; for a bigger p, we can use a simple computer program. For example, it is not
hard to check by a manual computation that the congruence n3 + 4n + 2 ≡ 0 mod 7 has
2 solutions (modulo 7): 1 and 5. The congruence n3 + 4n + 2 ≡ 0 mod 101 has a unique
(modulo 101) solution: x = 37; but I was able to find it only with the help of a computer.

5. The transition N = pk → N = pk+1 (k ≥ 1): Hensel’s Lemma, the
statement. Obviously, a solution of the congruence P (x) ≡ 0 mod pk+1 is also a solution
of the congruence P (x) ≡ 0 mod pk. So, our problem may be stated in the following
way. Let x be a solution of the congruence P (x) ≡ 0 mod pk. Find the solutions of the
congruence P (y) ≡ 0 mod pk+1 such that y ≡ x mod pk. If 0 ≤ x < pk, then there are p
integers y such that y ≡ x mod pk and 0 ≤ y < pk+1: these are x, x + pk, x + 2pk, . . . , x +
(p − 1)pk. So, our problem takes the following form: for a solution x of the congruence
P (x) ≡ 0 mod pk, find all integers a, 0 ≤ a ≤ p − 1 such that P (x + apk) ≡ 0 mod pk+1.
For k ≥ 1, this problem is solved by the following beautiful theorem which is known as
Hensel’s Lemma.

Hensel’s Lemma. Let P (x) be a polynomial with integer coefficients, and let p be a
prime. Further, let k ≤ 1, and let P (x) ≡ 0 mod pk, 0 ≤ x < pk. There are two cases.

Case One: P ′(x) 6≡ 0 mod p. Then there exists a unique a, 0 ≤ a ≤ p− 1 such that
P (x + apk) ≡ 0 mod pk+1. More precisely, a is obtained by the division of the residue
modulo p of the integer P (x)/pk by the residue modulo p of −P ′(x).

Case Two: P ′(x) ≡ 0 mod p. Then there are two possibilities: either P (x + apk) ≡
0 mod pk+1 for all a between 0 and p− 1, or this holds for no one of these a.

6. Proof of Hensel’s Lemma. It is sort of unfair that the proof of this remarkable
theorem is so simple.

Proof (Case One). By the Taylor formula (see Section 1),

P (x + apk) = P (x) + P ′(x) · apk +
P ′′(x)

2
· (apk)2 +

P ′′′(x)

3!
· (apk)3 + . . .︸ ︷︷ ︸

divisible by pk+1

[Here we use the fact that
P (k)(x)

k!
is an integer (see Section 1) and also the inequality k ≥ 1:

it implies the inequality 2k ≥ k + 1.] Thus, the congruence P (x + apk) ≡ 0 mod pk+1 is
equivalent to the congruence P (x)+P ′(x) ·apk ≡ 0 mod pk+1, which, in turn, is equivalent
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to the congruence
P (x)

pk
+ P ′(x) · a ≡ 0 mod p. Thus, a (which may be considered as a

residue modulo p) is uniquely defined and is obtained by the residue division as described
in the statement.

(Case Two.) If P ′(x) ≡ 0 mod p, then the same Taylor formula shows that, indepen-
dentlly of a, P (x + apk) ≡ P (x) mod pk+1, which implies our statement.

7. How it works. We choose a solution x0, 0 ≤ x0 < p of the congruence P (x) ≡
0 mod p. Suppose that P ′(x0) is not divisible by p. In this case, we change the notation
x0 to a0. A successive application of the Case One of Hensel’s Lemma gives the following:

there exists a unique a1, 0 ≤ a1 < p such that P (a0 + a1p) ≡ 0 mod p2;
there exists a unique a2, 0 ≤ a1 < p such that P (a0 + a1p + a2p

2) ≡ 0 mod p3;
there exists a unique a3, 0 ≤ a1 < p such that P (a0 + a1p+ a2p

2 + a3p
3) ≡ 0 mod p4;

and so on. Moreover, all these ai’s are described by explicit formulas. Notice also that all
P ′(a0), P ′(a0 + a1p), P ′(a0 + a1p + a2p

2), . . . are the same modulo p; so, to find the whole
sequence a1, a2, a3, . . . we need only to find the residue b = (−P ′(a0)) and then use the
formulas

a1 = [P (a0)/p]p · b, a2 = [P (a0 + a1p)/p2]p · b, a3 = [P (a0 + a1p + a2p
2)/p3]p · b,

([z]p denotes the residue of z modulo p, and · denotes the multiplication of residues) and
so on.

Suppose now that P ′(x0) is divisible by p. If P (x0) is not divisible by p2, then
it is a dead end: no congruence P (x) ≡ 0 mod pk with k ≥ 2 will have no solutions
congruent to x0 modulo p. If, however, P (x0) is divisible by p2, then the congruence
P (x) ≡ 0 mod p2 acquires p different (modulo p2) solutions congruent to x0 modulo p:
x0, x0 + p, x0 + 2p, . . . , x0 + (p − 1)p. We will have to check each of P (x0 + ap) for the
divisibility by p3; those of them, which are divisible by p3, provide p solutions of the
congruence P (x) ≡ 0 mod p3. And so on.

We see that applications of Case Two meet more difficulties that those of Case One.
Below, we will use mostly Case One.

8. An example. Let P (x) = x3 + 4x + 2 and p = 7. Then P (0) = 2, P (1) =
7, P (2) = 18, P (3) = 41, P (4) = 82, P (5) = 147, P (6) = 242. Of all this numbers, only
P (1) and P (5) are divisible by 7; thus, the congruence P (x) ≡ 0 mod 7 has two solutions:
1 and 5. Furthermore, P ′(x) = 3x2 + 4, P ′(1) = 7 ≡ 0 mod 7, P ′(5) = 79 ≡ 2 mod 7.

Let us begin with a remark that since P (1) is not divisible by 72 = 49, Case Two
of Hensel’s Lemma says, basically, that we can forget of this solution: no congruence
P (x) ≡ 0 mod 7k with k ≤ 2 has any solution congruent to 1 modulo 7.

It is all very different with 5. Since (−P ′(5)) = (−2) = 3, we have the following:

P (5) = 147, 147/7 = 21 ≡ 0 mod 7, a1 = 0 · 3 = 0;
5 + 0 · 7 = 5, P (5) = 147, P (5)/72 = 3, a2 = 3 · 3 = 2;
5 + 2 · 72 = 103, P (103) = 1093141, P (103)/73 = 3187 ≡ 2 mod 7, a3 = 2 · 3 = 6;
103 + 6 · 73 = 2161, P (2161) = 100917079, P (2161)/74 = 4203127 ≡ 5 mod 7,

a4 = 5 · 3 = 1;
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P (5 + 0 · 7 + 2 · 72 + 6 · 73 + 74)/75 = 5649054 ≡ 5 mod 7, a5 = 5 · 3 = 1;
P (5 + 0 · 7 + 2 · 72 + 6 · 73 + 74 + 75)/76 = 82940063 ≡ 3 mod 7, a6 = 3 · 3 = 2;
P (5 + 0 · 7 + 2 · 72 + 6 · 73 + 74 + 75 + 2 · 76)/77 = 20531648631 ≡ 4 mod 7, a7 = 4 · 3 = 5.

Thus, a0, a1, . . . , a7 are 5, 0, 2, 6, 1, 1, 2, 5, so

P (5 + 0 · 7 + 2 · 72 + 6 · 73 + 1 · 74 + 1 · 75 + 2 · 76 + 5 · 77) ≡ 0 mod 78.

I found the numbers a0 and a1 manually; for a2 I had to use a pocket calculator; the num-
bers a3, . . . , a7 required a simple computer program. Certainly, using more sophisticated
instruments, we can find the numbers ai much farther. These numbers form an infinite
sequence of residues modulo 7. What is this sequence?

The solutions modulo 7k are 5, 5 + 2 · 72, 5 + 2 · 72 + 6 · 73, and so on. This integers
have obvious representation in the numerical system with the base 7: 57, 2057, 62057, and
so on. But we have nothing to be called the limit of this sequence.

It often happens that when mathematician do not understand the nature of some
phenomenon, they just invent a name for it; after this, they feel themselves more confident
with the phenomenon. We consider an infinite series 5 + 0 · 7 + 2 · 72 + 6 · 73 + 1 · 74 + 1 ·
75 +2 ·76 +5 ·77 + . . . and call it a p-adic integer. Thus, a p-adic integer is a “number with
infintely many digits,” in our case, . . . 521162057. If the sequence of digits is finite (that
is, starting from some moment, they are all zeroes), then a p-adic integer is a genuine
non-negative integer. In general, p-adic integers have residues modulo p, p2, p3, and so
on, and the residue modulo pk+1 is congruent modulo pk to the residue modulo pk. The
difference between a general p-adic integer and a non-negative integer is that for a non-
negative integer this sequence of residues stabilizes (for example, for n = 500, the sequence
of residues modulo 7, 72, 73, . . . is 3, 10, 157, 500, 500, 500, . . ., while for a general p-adic
integer no such stabilization holds.

The Case One of Hensel’s Lemma states that if a0, 0 ≤ a0 < p, is a solution of
a congruence P (x) ≡ 0 mod p and P ′(a0) 6≡ 0 mod p, then there exists a unique p-adic
solution of the equation P (x) = 0 whose residue modulo p is a0.

9. p-adic arithmetic. The last statement means that we can “plug” a p-adic integer
into a polynomial with integral coefficients. This requires some understanding of the p-adic
arithmetic.

Question One: can we add p-adic integers? Answer: why not? For p-adic integers,
the addition is not different from the usual elementary school addition. Say, let us find the
sum of 7–adic integers . . . 365044 and . . . 264535:

. . .

. . .
365044
264535

........................................................................................................................................
. . . 662612

1 1 1 1

+

We begin from the left. The leftmost digits are 4 and 5, 4 + 5 = 9, the residue modulo 7
is 2. We wright 2 and, for the remaining 7, carry a 1 to the nest digits to the right. For
these next digits, we have 1 + 4 + 3 = 8, the residue is 1, we write 1 and again carry 1 to
the next digit to the right. For the next digits, we have 1 + 0 + 5 = 6, we write 6 and carry
nothing. Next, 5 + 4 = 9, we write 2 and carry 1. Next: 1 + 6 + 6 = 13, we write 6 and
carry 1. Next digits: 1 + 3 + 2 = 6, we write 6. And so on.
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Question Two: can we subtract p-adic integers? Yes, and all we need for that is to
subtract an arbitrary p-adic number from zero. If we have a p-adic integer . . . a3a2a1a0
and a0 6= 0, then the “subtraction from zero” gives . . . b3b2b1b0 where b0 = p − a0, b1 =
p−1−a1, b2 = p−1−a2, b3 = p−1−a3 and so on. The addition . . . a3a2a1a0+ . . . b3b2b1b0
gives obviously . . . 0000 (we carry 1’s at every step). (Example for p = 7: 0− . . . 264535 =
. . . 402132.) What to do, if a0 = 0? Let a0 = a1 = . . . = ak−1 = 0 and ak 6= 0. Then we
put b0 = b1 = . . . = bk−1 = 0 and bk = p− ak, bk+1 = p− 1− ak+1, bk+2 = p− 1− ak+2,
and so on. (We need to say also that zero minus zero is zero.) To complete the definition
of subtraction, we say that A−B = A + (0−B).

Notice that there is no such things as positive and negative p-adic integers (although
there is a zero); still, the subtraction is always possible.

Question Three: what about the multiplication? Again, elementary school students
are ready to help. Let us try to multiply the two 7-adic integers, which we used in our
example of addition.

. . .

. . .
365044
264535

........................................................................................................................................
. . . 554316
. . . 61165
. . . 4316
. . . 242
. . . 63
. . . 1
........................................................................................................................................
. . . 533166

×

Let us explain this. First we muptiply . . . 365044 by the last digit of the second factor,
that is, by 5. We take the product 5× 4 = 20, it is 6 modulo 7: 20 = 6 + 2 · 7, we write 6
and “carry” 2. Then we multiply 5 by the second digit of . . . 365044, that is, again, by 4,
and add our “carry”: 5× 4 + 2 = 22, it is 1 modulo 7: 22 = 1 + 3 · 7, so we right 1 next to
6 and carry 3. Next step: 5 · 0 + 3 = 3, we write 3 next to 1 and “carry” nothing. Then
5 · 5 + 0 = 25, we write 4 and carry 3; and so on. In this way we form the “first line”:
. . . 554316. Then we multiply, in the same way, 3 by . . . 365044 and write the result as the
second line with a shift to the left by one position: . . . 61165. And so on. Then we add up
the lines, as they are written, and obtain the desired product.

We see that the product of two p-adic integers is well defined. Obviously, zero times
anything is zero, one times anything is this anything. It requires some efforts to check that
the multiplication is commutative, associative and distributive. Also, it is true that the
operation of subtraction from zero (described above) is the same as the multiplication by
“negative one,” which is . . . (p−1)(p−1)(p−1)(p−1). These statements may be regarded
as exercises.

The last funny remark: what happens, if we multiply a p-adic integer A = . . . a3a2a1a0
by p? It is easy: the integer p, as a p-adic integer, is . . . 00010, so the multiplication
gives the same A shifted by one position to the left: . . . a3a2a1a00. Another explanation:
(. . . + a3p

3 + a2p
2 + a1p + a0)× p = . . . + a3p

4 + a2p
3 + a1p

2 + a0p + 0.

Question Four: division. This is a delicate question. In the usual arithmetic, the
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division of an integer by an integer is not always possible (within the domain of integers;
mathematicians, following the recommendation given above, solve the problem by invent-
ing a new name: a rational number, or a fraction). Say, we can divide 102 by 3, but
cannot divide 101 by 3. This leads to a huge (actually, never ending) variety of divisibil-
ity rules. For p-adic integers, the situation is much simpler: if A = . . . a4a3a2a1a0 and
B = . . . b4b3b2b1b0 are p-adic integers and a0 6= 0, then B is divisible by A, that is, there
exists a p-adic integer C = . . . c4c3c2c1c0 such that B = A · C.

We will demonstrate this on an example; we will use the same 7-adic integers, which
we used to demonstrate addition and multiplication: we will show how to divide 7-adic
. . . 264535 by 7-adic . . . 365044. We want to find a 7-adic integer C such that . . . 365044·C =
. . . 264535. What is the last digit of C? It is a residue modulo 7 whose product with 4 is
5. The division of 5 by 4 modulo 7 is possible (because 4 6= 0) and gives 3. Let us write

. . .

. . .
365044

3
........................................................................................................................................
. . . 461165

The last digit is 6, it is OK, but the next (to the left) digit is 6, while we want to have 3.
To compensate this, we need to add 4 to this 6, and 4 divided by 4 (we must say, modulo 7,
although it is not important now) is 1. Write 1 next to 3 in the second line and multiply:

. . .

. . .
365044

13
........................................................................................................................................
. . . 461165
. . . 65044
........................................................................................................................................
. . . 635

Now, the last two digits of the product are 35, this is what we want, but the digit 6 before
them is not satsfactory: we want to see 5 there. To turn 6 into 5, we need to add 6 to
it. Since 6 divided by 4 modulo 7 is 5, we write 5 before 13 in the second line. Then we
multiply:

. . .

. . .
365044

513
........................................................................................................................................
. . . 461165
. . . 65044
. . . 4136
........................................................................................................................................
. . . 3535

Here we encounter the same problem as before: the last three digits of the product, 535,
are OK, but the digit 3 before them is not what we want: we want to see 4 there. To
compensate this, we need to add 1 to 3; to achieve this, we divide 1 by 4 modulo 7, get 2
and write this 2 before 513 in the second line. And so on. Here is the final result:
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. . .

. . .
365044
412513

........................................................................................................................................
. . . 461165
. . . 65044
. . . 4136
. . . 121
. . . 44
. . . 2
........................................................................................................................................
. . . 264535

We obtain the 7-adic division: (. . . 264535)÷(. . . 365044) = . . . 412513. If you examine
the operations involved, you will notice that at every step we had to divide, modulo 7,
some digit by 4; all the rest was a plain multiplication. You can see from this example,
that every p-adic integer is “divisible” by every p-adic integer (that is, the result of division
is also a p-adic integer) provided that the last digit of divisor is not zero. (No division
rules!!!)

But what if the last digit of the divisor is zero? For example, how to divide . . . 264535
by . . . 3650440? Well, . . . 3650440 is . . . 365044 times 7 = . . . 000010. Thus, to divide
. . . 264535 by . . . 3650440, we first divide it by . . . 365044 and get . . . 412513 and then want
to divide . . . 412513 by . . . 000010, which seems to be impossible. But is it really so? What
we want is to divide . . . + 4 · 75 + 1 · 74 + 2 · 73 + 5 · 72 + 1 · 7 + 3 by 7. Our common sense
says that we should get . . . + 4 · 74 + 1 · 73 + 2 · 72 + 5 · 7 + 1 + 3 · 7−1. It is something
like a decimal fraction with one digit after the decimal dot, which we may call a p-mal
fraction: . . . 41251.3. We can consider this as a new notation, and using it, we can say
that the division of any p-adic integer by any non-zero p-adic integer gives a p-mal fraction
with finitely many digits after the p-mal dot. Even more: the ratio between two p-mal
fractions, of which the second is not zero, is a p-mal fraction. The number of digits after
the p-mal dot is always finite. No infinite p-mal fractions, periodic or not periodic, exist
in the p-adic arithmetics: forget about them.

For those who value periodic fractions beyond any ability to forget them, we offer the
following exercise: prove that the 7-adic 1÷2 is . . . 33334; a generalization: prove that the
p-adic fraction a ÷ b where a and b are positive (not p-adic!) integers is periodic to the
left. Two more examples: 7-adic 5÷ 3 is . . . 22224, and 7-adic 3÷ 5 is . . . 1254︸︷︷︸ 1254︸︷︷︸ 1254︸︷︷︸ 2.

The conclusion which we arrive at: the p-adic arithmetic is much simpler (or, maybe,
we should say “much better organized”) than the usual arithmetic. And not only this!

10. p-adic algebra. We already have Hensel’s Lemma, which paves a way to solving
algebraic equations. Let us begin with the simplest application of it: with square roots.
Say, what is the 7-adic aquare root of 2? No problems with that: we want to solve, in
7-adic integers, the equation x2−2 = 0. This equation has two solutions modulo 7, namely
3 and 4. The derivative of the polynomial x2 − 2 is 2x, certainly it is not zero for x being
either 3 of 4; so, we can find its 7-adic solution whose residue modulo 7 is 3, and this
solution is unique. A computation, which looks very much like the computation in Section
8, gives the result: 7-adic square root of 2 is . . . 266421216213. There is also a square root
of 2 which ends by the digit 4, we can find it by the same procedure, but also we can say
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that it is “minus the previous square root,” that is, . . . 400245450454. Well, a what about
a 7-adic square root of 3? Unfortunately, 3 is not a “quadratic residue modulo 7,” that is,
it is not a square of any other residue modulo 7. So, there is no 7-adic integer (or 7-adic
rational number) whose square is 3. I can say that the square root of 3 for 7-adic numbers
is the same as the square root of 2 (or of 3) for usual rational numbers: not that it does
not exist, but to speak of it, we have to admit that it belongs to an appropriate extension
of the realm of p-adic rational numbers (which could be called “p-adic algebraic numbers,”
but I have never heard this name).

Still I must mention that Case One of Hensel’s Lemma has a natural generalization:
if an algebraic equation P (x) = 0 with integer p-adic coefficients has a solution a0 modulo
p such that P ′(a0) is not divisible by p, then it has a unique integer p-adic solution whose
residue modulo p is a0. The proof of this fact is a replica of the proof of Case One of
Hensel’s Lemma given in Section 6. By the way, if we had had noticed this before, we
could have demonstrated the existence of p-adic division in a very simple way. Look: we
want to find a p-adic solution of an equation Ax− B = 0 where the last digit of A is not
zero. It has a (unique) solution modulo p: it is the usual division modulo p, which we
discussed in Section 1. The derivative of Ax − B is A; again, it is not zero modulo p.
Hence, the solution exists and is unique.

11. p-adic analysis. I will not say much about it. Almost all major notions of
calculus exist in the p-adic context. And, as it is the case for arithmetic and algebra, the
p-adic analysis is much “better organized” than the usual analysis. I will mention two

examples. In the classical calculus, it is well known that a series
∞∑

n=0
an diverges unless

lim
n→∞

an = 0, but the condition lim
n→∞

an = 0 is not sufficient for the convergency; this gives

rise to multiple convergency tests, and many generations of college students have hated
them. But in the p-adic analysis the result is much better looking: a series converges if
and only if its terms converge to zero. Another example: in classical analysis a power
series

∑
anx

n has a convergency radius R; the series converges for |x| < R, diverges for
|x| > R and – nothing is known for |x| = R. This is especially important for the power
series of complex variable, or of several real variables. Power series in p-adic analysis also
have convergency radii, but on the boundary of the convergency interval, or disc, we have
a very simple alternative: either the series converges for all x on this boundary, or diverges
for all x on this boundary.

There is much more. There exist p-adic geometry, p-adic representation theory, even
p-adic field theory, which becomes more and more popular in Mathematical Physics. I stop
here, but for those who want to know more, there are books. I will mention two of them;
both are attractively short. The first is my favorite, the second is also very well written
and addressed, more or less, to people like you.

1. Neal Koblits, “p-adic Numbers, p-adic Analysis, and Zeta-Functions.” Graduate
Texts in Mathematics, Vol. 58. Springer, 1984.

2. Svetlana Katok, “p-adic Analysis Compared with Real.” Student Mathematical
Library, Vol. 37. Amer. Math. Soc., 2007.
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