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1 Definitions

A matrix (plural: matrices)s simply arectangulaarrayof “things”. For now, we’ll assumehe“things” arenumbers,
but asyou go onin mathematicsyou’ll find thatmatricescanbearraysof very generabobjects.Prettymuchall that’s
requiredis thatyou be ableto add,subtractandmultiply the“things”.

Hereare someexamplesof matrices. Notice that it is sometimesusefulto have variablesasentries,aslong asthe
variablesrepresenthe samesortsof “things” asappeaiin the otherslots. In our exampleswe’ll alwaysassumehat
all the slotsarefilled with numbers.All our examplescontainonly real numbers but matricesof complex numbers
arevery common.
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Thefirstexampleis asquare3 x 3 matrix; thenext isa2 x 4 matrix (2 rows and4 columns—ifwe talk abouta matrix
thatis “m x n” we meanit hasm rows andn columns). Thefinal two examplesconsistof a single columnmatrix,
andasinglerow matrix. Thesefinal two examplesareoftencalled“v ectors”—théfirst is calleda “columnvector’and
theseconda “row vector”. We’'ll useonly columnvectorsin thisintroduction.

Oftenwe areinterestedn representing@ generalm x n matrix with variablesin every location,andthatis usually
doneasfollows:

11 ai2 @13 G1n
G21 Qg2  G23 G2n
Am1 Am2  Am3 ot Gmn

Thenumberin row ¢ andcolumnjy is representedly a;;, wherel < ¢ < m andl < j < n. Sometimesvhenthereis
no questionaboutthe dimensionof a matrix, the entirematrix cansimply be referredto as:

(aij) -

1.1 Addition and Subtraction of Matrices

As long asyou canaddandsubtracthe “things” in your matricesyou canaddandsubtractthe matricesthemseles.
Theadditionandsubtractioroccursin the obviousway—elemenby element.Herearea coupleof examples:

1 3 7 3 2 1 4 5 8
2 6 —4|+[55 3 —e|=[75 9 -—-4-—¢
2 15 7 2 5 2 4 20 w42



1 3 7 3 2 1 -2 1 6
2 6 —4|—-[55 3 —e|=[-35 3 e—4
2 15 « 2 5 42 0 10 #—+2

To find whatgoesin row i andcolumnj of thesumor difference justaddor subtracthe entriesin row ¢ andcolumn
7 of thematricesbeingaddedor subtracted.

In orderto make sensebothof thematricesn thesumor differencemusthave the samenumberof rows andcolumns.
It makesno sensefor example,to adda2 x 4 matrixto a3 x 4 matrix.

1.2 Multiplication of Matrices

Whenyou addor subtractmatricesthetwo matricesthatyou addor subtracimusthave the samenumberof rows and
the samenumberof columns.In otherwords,bothmusthave the sameshape.

For matrix multiplication, all thatis requiredis that the numberof columnsof the first matrix be the sameasthe
numberof rows of the secondmatrix. In otherwords,you canmultiply anm x k& matrix by a k& x n matrix, with
them x k matrix on the left andthe & x n matrix on the right. The exampleon the left belov represents legal
multiplicationsincetherearethreecolumnsin theleft multiplicandandthreerowsin theright one;theexampleonthe
right doesnt make sense—théeft matrix hasthreecolumns but the right onehasonly 2 rows. If the matriceson the
right werewrittenin thereverseorderwith the2 x 3 matrixontheleft, it would represenavalid matrix multiplication.
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Sonow we know whatshape®f matricesit is legalto multiply, but how do we do the actualmultiplication? Hereis
themethod:

If we aremultiplying anm x k matrix by a k& x n matrix, theresultwill beanm x n matrix. The elementin the
productin row ¢ andcolumnj is gottenby multiplying term-wiseall the elementsn row ¢ of the matrix ontheleft by
all theelementsn columnj of the matrix ontheright andaddingthemtogether

Hereis anexample:

1 3 2 4 11 32 59
5 0 7 6 10 = 55 118
6 9 8 5 9 118 228

To find whatgoesin thefirst row andfirst columnof the product,take the numberfrom thefirst row of the matrix on
theleft: (1, 3,2), andmultiply them,in order, by the numbersn thefirst columnof the matrix ontheright: (4,6, 5).
Addtheresults:1-4+3-6+2-5 =4+ 18 + 10 = 32. To getthe 228in the third row andsecondcolumnof the
product,theusethe numbersn thethird row of theleft matrix: (6,9, 8) andthe numbersn the secondccolumnof the
right matrix: (11,10,9) toget6- 11 +9-10+8-9 = 66 + 90 + 72 = 228.

Checkyour understandindy verifying thatthe otherelementsn the productmatrix arecorrect.
In generaljf we multiply ageneralm x k matrixby agenerak x n matrixto getanm x n matrix asfollows:

a11 a2 - OG1g bin bz - bip C11 Ciz2 -+ Cin
a21 Q22 - G2f bar b2 - boy C21 Cog -+ Cop
am1 Gm2 " Amk bkl bk2 ot bkn Cml Cm2 " Cmn



Thenwe canwrite ¢;; (thenumberin row ¢, columny) as:
k
Cij = Z aipbpj.
p=1

1.3 Square Matrices and Column Vectors

Although everythingabove hasbeenstatedin termsof generalrectangulamatrices for therestof this tutorial, we’ll

consideronly two kinds of matrices(but of any dimension):squarematrices,wherethe numberof rows is equalto
the numberof columns,and column matrices,wherethereis only one column. Thesecolumn matricesare often
called“vectors”,andtherearemary applicationsvherethey correspondxactly to whatyou commonlyuseassetsof
coordinategor pointsin space.In the two-dimensionak-y plane,the coordinateg1, 3) represent point thatis one
unit to the right of the origin (in the directionof the z-axis), andthreeunits above the origin (in the directionof the
y-axis). Thatsamepoint canbe written asthe following columnvector:

1
)
If you wish to work in three dimensions,you’ll needthree coordinatesto locate a point relative to the (three-

dimensional)origin—an z-coordinate,a y-coordinate,and a z-coordinate. So the point you'd normally write as
(z,y, z) canberepresentetly the columnvector:

Quite oftenwe will work with a combinationof squarematricesandcolumnmatrices,andin thatcase|f the square
matrix hasdimensiong: x n, thecolumnvectorswill have dimensiom x 1 (n rowsand1 column}..

1.4 Propertiesof Matrix Arithmetic

Matrix arithmetic (matrix addition, subtraction,and multiplication) satisfiesmary, but not all of the propertiesof
normalarithmeticthatyou areusedto. All of the propertiesbelow canbe formally proved,andit’s not too difficult,
but we will notdo sohere.In whatfollows,we’ll assumehatdifferentmatricesarerepresentetly uppercasdetters:
M, N, P, ..., andthatcolumnvectorsarerepresentely lower-casdetters.v,w,. ...

We will furtherassumehatall thematricesaresquaranatricesor columnvectors andthatall arethesamesize,either
n X n orn x 1. Further we'll assumehatthe matricescontainnumbergreal or complex). Most of the properties
listedbelow applyequallywell to non-squarenatrices assuminghatthe dimensiongnake thevariousmultiplications
andaddtions/subtractionsalid.

Perhapghe first thing to noticeis that we canalways multiply two n x n matrices,andwe canmultiply ann x n
matrix by a columnvector, but we cannotmultiply a columnvectorby the matrix, nor a columnvectorby anotherIn
otherwords,of thethreematrix multiplicationsbelow, only thefirst onemakessense Be sureyou understandavhy.

1 2 3 10 10 1 2 3 10 7
4 5 6 11 11 4 5 6 11 8
7 8 9 12 12 7 8 9 12 9

1we couldequallywell userow vectorsto correspondo coordinatesandthis corventionis usedin mary places.However, the useof column
matricesfor vectorsis morecommon



Finally, an extremelyusefulmatrix is calledthe “identity matrix”, andit is a squarematrix thatis filled with zeroes
exceptfor onesin the diagonalelementghaving the samerow andcolumnnumber).Here,for example,is the4 x 4
identity matrix:

1 0 00
0100
0010
00 01

Theidentity matrixis usuallycalled“ I” for any sizesquarematrix. Usuallyyou cantell thedimensionf theidentity
matrix from the surroundingcontext.

e Associatve laws:

(MN)P = M(NP) (MN)v = M(Nv)
(M+N)+P=M+(N+P) @w+v)+w=u+(v+w)

e Commutatve laws for addition:
M+N=N+M v+w=w-+v

e Distributive laws:

M(IN+P)=MN=EtMP (M£N)P=MP=ENP
Mv+tw)=MvtMw (M £ Nyp=MvxNv

o Theidentity matrix:
NI=IN=N Iv=v

Probablythe mostimportantthing to noticeaboutthe laws above is onethat’s missing—multiplicatiorof matricesis
notin generalcommutatve. It is easyto find examplesof matricesM andN whereM N # N M. In fact,matrices
almostnever commuteundermultiplication. Here's anexampleof a pair thatdon't:

1 1\ /1 0\ _ (2 1\, 1 0\ /1 1y _ (11

0 1/\1 1) \1 1)° 1 1\0 1/ \1 2/°
Sotheorderof multiplicationis very important;that’s why you may have noticedthe carethathasbeentaken sofar
in describingmultiplication of matricesin termsof “the matrix ontheleft”, and“the matrix ontheright”.

The associatie laws above are extremely useful,andto take one simple example,considercomputergraphics. As
we'll seelater, operationdik e rotation,translationscaling,perspectie, andsoon, canall berepresentethy a matrix
multiplication. Supposeyou wish to rotateall the vectorsin your drawing andthento translatethe results. Suppose
R andT arethe rotationandtranslationmatricesthat do thesejobs. If your picture hasa million pointsin it, you
cantake eachof thosemillion pointsv androtatethem, calculatingRv for eachvectorv. Then,the resultof that
rotationcanbe translated 7' (Rv), soin total, therearetwo million matrix multiplicationsto make your picture. But
theassociatie law tells uswe canjust multiply 7' by R onceto getthematrix TR, andthenmultiply all million points
by TR to get(T'R)v, soall in all, thereareonly 1,000,001matrix multiplications—oneto producel' R anda million
multiplicationsof T'R by theindividual vectors.That'’s quite a savings of time.

The otherthing to noticeis that the identity matrix behaesjust like 1 undermultiplication—if you multiply any
numberby 1, it is unchangedif you multiply any matrix by the identity matrix, it is unchanged.



2 Applications of Matrices

This sectionillustratesa tiny numberof applicationsof matricesto real-world problems.Somedetailsin the solutions
have beenomitted,but that's becausentirebooksarewritten on someof thetechniquesOur goalis to malkeit clear
how a matrix formulationmaysimplify the solution.

2.1 Systemsof Linear Equations

Let'sstartby takingalook ataproblemthatmayseemabit boring,but in termsof practicalapplicationds perhapghe
mostcommonuseof matrices:the solutionof systemsf linear equations Following is a typical problem(although
real-world problemsmay have hundredsof variables).

Solve thefollowing systemof equations:

z+4y+3z = 7
2z +5y+4z = 11
z—3y—2z = 5.

Thekey obsenationis this: the problemabove canbe corvertedto matrix notationasfollows:

1 4 3 T 7
2 5 4 y|l=1|11]. (2)
1 -3 -2 z 5

Thenumbersgn the squarematrix arejust the coeficientsof z, y, andz in the systemof equations Checkto seethat
thetwo forms—thematrix form andthe systemof equationsorm—represenexactly the sameproblem.

Ignoring all the difficult details, hereis how suchsystemscanbe solved. Let M be the 3 x 3 squarematrix in
equation(1) above, sotheequatioriookslik e this:

060

Supposeve cansomehw find anothermatrix N suchthat VM = I. If we can, we canmultiply both sidesof

equation(2) by N to obtain:
z z 7
NMly| =1 =|ly|=N|11],
z z 5

sowe cansimply multiply our matrix N by the columnmatrix containingthenumbers7, 11, and5 to getour solution.

Without explainingwherewe gotit, thematrix ontheleft below is justsuchamatrix V. Checkthatthemultiplication
below doesyield theidentity matrix:

2 -1 1 1 4 3 1 00
&8 =5 2 2 5 4 |=1010].
-1 7 -3 1 -3 -2 0 01

Sowe justneedto multiply thatmatrix N by the columnvectorcontaining7, 11, and5 to getour solution:

o7 ) )-(2)-)

5

N @R



Fromthislastequationwe concludethatz = 8, y = 11, andz = —15 is asolutionto theoriginal systenof equations.
You canplug themin to checkthatthey doindeedform a solution.

Althoughit doesnt happenall that often, sometimedhe samesystemof equationseedsto be solved for a variety
of columnvectorson the right—not just one. In that case,the solutionto every one canbe obtainedby a single
multiplicationby the matrix N.

Thematrix N is usuallywritten asM ~*, called* M -inverse”. It is a multiplicative inversein just the sameway that
1/3 istheinverseof 3: 3 - (1/3) = 1, and1 is the multiplicative identity, justas is in matrix multiplication. Entire
booksarewritten thatdescribemethod=of finding the inverseof a matrix, sowe won't go into thathere.

Remembethatfor numberszerohasno inverse;for matrices,it is muchworse—maw, mary matricesdo not have
aninverse.Matriceswithout inversesarecalled“singular’. Thosewith aninversearecalled“non-singular”.

Justasan example,the matrix on the left of the multiplication belonv cant possiblyhave aninverse,aswe cansee
from thematrix ontheright. No matterwhatthevaluesareof a, b, . .. , i, it isimpossibleto getarything but zeroesn
certainspotsin the diagonal andwe needonesin all thediagonalspots:

1 00 a b c a b ¢
0 0O d e f]=10 00
0 0O g h i 0 0O

If the setof linearequationshasno solution,thenit will beimpossibleto invertthe associatednatrix. For example,
thefollowing systenof equationsannotpossiblyhave a solution,sincez + y + z cannotpossiblyaddto two different
numberdq7 and11) aswould berequiredby thefirst two equations:

z+y+z = 7
r+y+z = 11
z—3y—2z = 5.

Soolviously the associatednatrix belowv cannotbeinverted:

1 1 1
1 1 1
1 -3 -2

2.2 Computer Graphics

Somecomputerganonly draw straightlineson the screenput complicateddrawvings canbe madewith along series
of line-drawing instructions.For example theletter“F” couldbedrawn in its normalorientationattheorigin with the
following setof instructions:

1. Draw aline from (0, 0) to (0, 5).

)
3. Draw aline from (0, 3) to (2, 3).

(=

2. Draw aline from (0, 5) to (3,

Imaginethatyou have adrawing that'sfarmorecomplicatedhanthe“F” above consistingof thousandsf instructions
similarto thoseabove. Let's take alook atthefollowing sortsof problems:

1. How would you corvertthe coordinatesothatthe draving would be twice asbig? How aboutstretchedwice
ashigh (y-direction)andthreetimesaswide (z-direction)?

2. Couldyou draw the mirror imagethroughthey-axis?



3. How would you shift thedrawing 4 unitsto theright and5 unitsdown?

4. Couldyourotateit 90° counterclockwiseaboutthe origin? Couldyou rotateit by anangled counterclockwise
abouttheorigin?

5. Couldyourotateit by ananglef aboutthepoint (7, —3)?

6. Ignoringthe problemof makingthe drawing on the screenwhatif your “drawing” werein threedimensions?
Couldyou solve problemssimilar to thoseabove to find the new (3-dimensionaloordinatesfteryour object
hasbeentranslatedscaledyotated et cetera?

It turnsoutthattheanswerdo all of the problemsabove canbe achieszedby multiplying your vectorsby a matrix. Of
coursea differentmatrix will solve eachone.Herearethesolutions:

Graphics Solution 1:

To scalein the z-directionby afactorof 2, we needto multiply all thez coordinatedy 2. To scalein they-direction,
we similarly needto multiply they coordinatesy the samescalefactorof 2. The solutionto scaleary draving by a
factors, in thez-directionands, in they-directionis to multiply all theinput vectorsby a generalscalingmatrix as

follows:
(5 o)) -(2)
0 s/ \y syy /)
To uniformly scaleeverythingto twice asbig, let s,, = s, = 2. To scaleby afactorof 2in thez-directionand3 in the
y-direction,let s, = 2 ands, = 3.

We'll illustrate the generalprocedurewith the drawing instructionsfor the “F” that appearectarlier The drawing
commandsredescribedn termsof a few points: (0,0), (0, 5), (3,5), (0,3), and(2, 3). If we write all five of those
pointsas columnvectorsand multiply all five by the samematrix (eitherof the two above), we'll getfive new sets
of coordinatedor the points. For example,in the caseof the secondexamplewherethe scalingis 2 timesin z and3
timesin y, thefive pointswill becornvertedby matrix multiplicationto: (0,0), (0,15), (6,15), (0,9) and(4,9). If we
rewrite thedrawing instructionsusingthesetransformedoints,we get:

1. Draw aline from (0, 0) to (0, 15).
2. Draw aline from (0, 15) to (6, 15).
3. Draw aline from (0, 9) to (6, 9).

Follow theinstructionsabove andseethatyou draw anappropriatelystretchedF”. In fact,dothesamethingfor each
of the matrix solutionsin this setto verify thatthe drawing is transformedappropriately Notice thatif s, or s, is
smallerthanl, thedrawing will be shrunk—notexpanded.

Graphics Solution 2:

A mirror imageis just a scalingby —1. To mirror throughthe y-axis meanshat eachz-coordinatewill bereplaced
with its negative. Here's a matrix multiplicationthatwill dothejob:

@ 96)-G)

To translatepoints4 to theright and5 unitsdown, you essentiallyneedto add4 to every z coordinateandto subtract
5 from every y coordinate.lf you try to solve this exactly asin the examplesabove, you'll find it is impossible.To

Graphics Solution 3:



convinceyourselfit's impossiblewith any 2 x 2 matrix, considewhatwill happerto the origin: (0,0). Youwantto
moveit to (4, —5), but look whathappensf you multiply it by any 2 x 2 matrix (a, b, ¢, andd canbe ary numbers):

a b\ 0\ [0

c dj\0)  \0/°
In otherwords,no matterwhata, b, ¢, andd are,the matrix will maptheorigin backto theorigin, sotranslationusing
this schemads impossible.

But theresagreattrick?. For every oneof yourtwo-dimensionalectors addanartificial third componenof 1. Sothe
point (3,6) will become(3, 6, 1), theorigin will become(0, 0, 1), et cetera.The columnvectorswill now have three
rows, sothetransformatiommatrix will needto be3 x 3. To translateby ¢, in thez-directionandt, in they-direction,
multiply theartificially-enlaigedvectorby a matrix asfollows:

1 0 ¢, T T+ 1,
01 ¢ yl=|y+ty
0 0 1 1 1

Theresultingvectoris just whatyou want,andit alsohasthe artificial 1 on the endthatyou canjustthrow away. To
gettheparticularsolutionto the problemproposedbove, simply let ¢, = 4 andt, = —5.

But now you're probablythinking, “That’s a neattrick, but whathappengo the matriceswe hadfor scaling?Whata
painto have to corvertto the artificial 3-dimensionaform andbackif we needto mix scalingandtranslatior. The
nice thing is that we canalways usethe artificially extendedform. Justusea slightly differentform of the scaling
matrix:

s, 0 0 T Sz
0 s, O y| = | syy
0 0 1 1 1

In the solutionsthatfollow, we'll awaysadda 1 asthe artificial third component
Graphics Solution 4:

Cornvinceyourself(by drawing afew examplesjf necessaryhatto rotatea point counterclockwiseby 90° aboutthe
origin, you will basicallymake the original z coordinateinto ay coordinateandvice-versa.But not quite. Anything
thathada positivey coordinatewill, afterrotationby 90°, have anegativez coordinateandvice-versa.In otherwords,
thenew y coordinatds theold z coordinateandthenew z coordinatds thenegative of theold y coordinate Corvince
yourselfthatthe following matrix doesthetrick (andnoticethatwe’ve addedthe 1 asanartificial third component):

-1

0 0
1 0 0
0 0 1

Thegenerakolutionfor arotationcounterclockwiseby ananglef is givenby thefollowing matrix multiplication:

cosf —sing 0 x zcosh — ysinf
sinf cos® 0 y| = | zsind+ycosb
0 0 1 1 1

If you've never seeranything lik e this before,you might considertrying it for acoupleof simpleangleslike § = 45°
or # = 30° andputin thedrawing coordinatesor theletter“F” givenearlierto seethatit’'s transformedproperly

2|n fact,it's alot morethanatrick—it is really partof projectiie geometry
3But in theworld of computergraphicsor projectve geometryit is often usefulto allow valuesotherthan1—in perspectie transformations,
for example



Graphics Solution 5:

Hereis wherethe power of matricesreally comesthrough. Ratherthan solve the problemfrom scratchaswe have
above, let’s just solwe it usingthe informationwe alreadyhave. Why not translatethe point (7, —3) to the origin,
thendo a rotationaboutthe origin, andfinally, translatethe resultbackto (7, —3)? Eachof thoseoperationsanbe
achieredby a matrix multiplication. Hereis thefinal solution:

1 0 7 cosf —sinf 0 10
01 -3 sinf cosf O 01 3 y
0 0 1 0 0 1 00 1 1

Notice carefullythe orderof thematrix multiplication. The matrix closesto the (z, y, 1) columnvectoris thefirst one
that's appliedto it—it shouldmove (7, —3) to the origin. To do that,we needto translatez coordinatedy —7 andy
coordinatedy 3. Thenext operationto bedoneis therotationby anarbitraryangled, usingthe matrix form from the
previousproblem.Finally, to translatebackto (7, —3) we have to translaten the oppositedirectionfrom whatwe did
originally, andthe matrix on thefarleft above doesjust that.

Remembethatfor any particularvalueof 8, sin # andcos 8 arejustnumberssoif you knew the exactrotationangle,
you could just plug the numbersin to the middle 3 x 3 matrix and multiply togetherthe threematriceson the left.
Thento transformary particularpoint, therewould be only onematrix multiplicationinvolved.

To corvince yourselfthat we've got the right answey why not put in a particular(simple) rotation of 90° into the
matricesandwork it out? cos 90° = 0 andsin 90° = 1, sotheproductof thethreematricesontheleft is:

10 7 0 -1 0 1 0 -7 0 -1 4
01 -3 1 0 0 01 3|=1[|1 0 -10
0 0 1 0 0 1 00 1 0 0 1

Try multiplying all the vectorsfrom the “F” exampleby the single matrix on the right abose and corvince yourself
thatyou've succeededh rotatingthe “F” by 90° counterclockwiseaboutthe point (7, —3).

Graphics Solution 6:

The answeris yes. Of courseyou’ll have to add an artificial fourth dimensionwhich is always 1 to your three-
dimensionatoordinatesbut theform of the matriceswill besimilar.

On the left below is the mechanisnfor scalingby s;, s,, ands; in the z-, y-, and z-directions;on the right is a
multiplicationthattranslatesy ¢,, t,, and¢, in thethreedirections.

s, 0 0 O T 1 0 0 ¢ T
0 s, 0 O Y 01 0 ¢ Y
0 0 s, O z 0 0 1 ¢, z
0 0 0 1 1 000 1

Finally, to rotateby an angleof # counterclockwiseaboutthe threeaxes, multiply your vectoron the left by the
appropriateoneof thefollowing threematriceg(left, middle,andright correspondo rotationaboutthe z-axis, y-axis,
andz-axis:

1 0 0 0 cosf 0 sinf O cosf —sinf 0 O
0 cosf —sinf O 0 1 0 0 sinf cosf@ 0 O
0 sinf cosf O —sinf 0 cos@ O 0 0 10
0 0 0 1 0 0 0 1 0 0 01

2.3 Gambler'sRuin Problem

Considetthefollowing questions:



1. Suppose/ou have $20andneed$50for a busride home. Your only chanceto getmoremoney is by gambling
in acasino.Thereis only onepossiblebetyou canmalke atthe casino—younustbet$10,andthenafair coinis
flipped. If “heads”results,youwin $10(in otherwords,you getyour original $10backplusanadditional$10),
andif it's “tails”, you losethe $10bet. The coin hasexactly the same50% probability of comingup headsor
tails. Whatis thechancehatyou will getthe$50you needVhatif you hadbegunwith $10?Whatif you had
begunwith $30?

2. Sameasabove, exceptthis time you startwith $40andneed$100for the busticket. But this time, you canbet
either$100r $200n eachflip. What's your bestbettingstrateyy?

3. Realcasinoglon't give you afair bet. Supposehe problemis the sameasabove, exceptthatyou have to make
a$10beton“red” or “black” onaroulettewheel. A roulettewheelin the United Stateshas18 rednumbers18
blacknumbersand2 greennumbers Winning ared or black betdoublesyour money if youwin (andyou lose
it all if you lose),but obviously you now have a slightly smallerchanceof winning. A red or black bethasa
probability of 18/38 = 9/19 of winning on eachspin of thewheel. Answerall the questionsaboveif your bets
mustbe madeon aroulettewheel.

All of theseproblemsareknown asthe “Gambler's Ruin Problem”—agamblerkeepsbettinguntil he goesbroke, or
until hereaches certaingoal,andthereareno otherpossibilities. The problemhasmary elegantsolutionswhich we
will ignore.Let's justassumave’re stupidandlazy, but we have a computeravailableto simulatethe problem.Here
is a nice matrix-basedpproacHor stupidlazy people.

At ary stagein theprocesstherearesix possiblestatesdependingnyour “fortune”. You have either$0 (andyou’ve
lost), or you have $10, $20, $30, $40 (andyou're still playing), or you have $50 (andyou’ve won). You know that
whenyou begin playing, you arein a certainstate(having $20in the caseof the very first problem). After you've
playedawhile, lots of differentthingscould have happenedso dependingon how long you've beengoing, you have
variousprobabilitiesof beingin the variousstates. Call the statewith $0 “state0”, andso on, up to “state 5” that
representdaving $50.

At ary particulartime, let’s let pg representhe probability of having $0, p; the probability of having $10,andsoon,
upto ps of having wonwith $50.

We cangive anentireprobabilisticdescriptionof your stateasa columnvectorlik e this:

Do
D
D2
D3
Da
D5

Now look at the individual situations. If you're in stateQ, or in state5, you will remaintherefor sure. If you'rein
ary otherstate,theres a 50% chanceof moving up a stateanda 50% chanceof moving down a state. Look at the
following matrix multiplication:

1 5 0 0 0 O Do Ppo + .51

0 0 5 0 0 O " .Op2

0 5 0 H 0 O P2 | _ .Bp1 + .Bps 3)
0 0 5 0 5 0 D3 .Bpa + .5ps

0 0 0 5 0 O D4 .9p3

0 0 0 0 5 1 D5 .Bps + ps

Clearly, multiplication by the matrix above representshe changean probabilitiesof beingin the variousstatesgiven
aninitial probabilisticdistribution. Thechanceof beingin state0 aftera coinflip is thechanceyouweretherebefore,
plushalf of the chancehatyou werein statel. Checkthatthe othersmake senseaswell.

10



Soif thematrix ontheleft in equation(3) is called P, eachtime you multiply thevectorcorrespondingo your initial
situationby P, you'll find the probabilitiesof beingin the variousstates.So after 1000 coin-flips, your statewill be
representethy P19%0,, wherew is the vectorrepresentingour original situation(py = p1 = ps = ps = ps = 0 and
p2 =1).

But multiplying P by itself 1000timesis a pain,evenwith acomputerHeresanicetrick: If youmultiply P by itself,
you get P2. But now, you canmultiply P2 by itself to get P*. Thenmultiply P* by itself to get P®, andsoon. With
just 10 iterationsof this techniquewe canwork out P1924  which couldevenbe doneby hand.if youweredesperate
enough.

Here's whatthe computersayswe getwhenwe calculateP'%24 to tendigits of accurag:

1 .8 .6 4 2 0
0 1.549 x 107% 0 2.506 x 1079 0 0
0 0 4.05 x 1079 0 2.50679° 0
0 2.506 x 1079 0 4.05 x 10798 0

0 0 2.506 x 107%° 0 1.549 x 107% 0
0 2 4 .6 8 1

For all practicalpurposeswe have:

P1024 —

coococ o
(O = = R R
O OoOOoC O o
OO O N
0 OO OO v
_—-Oo 00 OO

Basically if you startwith $0, $10,... , $50,you have probabilitiesof 0, .2, .4, .6, .8, and1.0 of winning (reachinga
goalof $50),andthe complementaryprobabilitiesof losing. As we saidabove, this canbe provenrigorously, but just
multiplying the transitionmatrix by itself repeatedlystronglyimpliestheresult.

To solve the secondproblem,simply do the samecalculationwith either6 states(a6 x 6 matrix) or 11 states(an
11 x 11 matrix) andfind a high power of the matrix. You'll find it doesnt make ary differencewhich strategy you
use.

Onthefinal problem,you canuseexactly the sametechniqueput this time the original matrix P will not have entries
of .5, but ratherof 9/19 and10/19. But afteryou know what P is, the procesf finding a high power of P is exactly
thesame.In generaljf you have a probability p of winning eachbetanda probabilityof ¢ = 1 — p of losing, heres
thetransitionmatrix calculation:

1 ¢ 00 0 0\ /po Po +qm
00 ¢g 00 O0]|m qpe
0 p 0 g 0 0] (p2| _ | P01 +aps
0 0p 0 gqg O] ]|ps| |pp2+aps
000 p 0O0]]|p D3
0000 p» 1/ \ps pps+ s

2.4 Board GameDesign

Imaginethatyou aredesigninga boardgamefor little childrenandyouwantto make surethatthe gamedoesnt take
toolongto finish or the childrenwill getbored.How mary moveswill it take, on averagefor a child to completethe
following games:
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1. Thegamehasl00squaresandyour markerbeginsonsquarel. Youroll asingledie whichturnsupanumberl,
2,3,4,5, or 6, eachwith probability 1/6. You advanceyour marker thatmary squaresWhenyou reachsquare
100,the gameis over. You do not have to hit 100 exactly—for exampleif you areon square98 andthrow a 3,
thegameis over.

2. Sameasabove, but now you musthit squarelO0exactly. Is thereary limit to how long this gamecouldtake?

3. Sameasabove, but certainof the square$iave specialmarkings:

Squarer says‘advanceto squarebs”.
Square99 says‘go backto squarell”.
Squareb8 says‘go backto square45”.
Squares83and72say “loseaturn”.
Squareb0 says‘lose two turns”.

In a sensethis is exactly the sameproblemas“gamblers ruin” above, but not quite so uniform, at leastin the third
example. For the first problem,thereare 100 statesrepresentinghe squareyou are currentlyupon. So a column
vector100itemslong canrepresenthe probability of beingin ary of the 100 statesanda transitionmatrix of size
100 x 100 canrepresenthetransitionprobabilities. Ratherthanwrite out the entire100 x 100 matrix for the game
initially specifiedet’s write out the matrix for a gamethat’s only 8 squaredong. You begin on squarel, andwin if
youreachsquareB. let p; betheprobabilityof beingon squarel, et cetera.Here’s the transitionmatrix:

0 1/6 1/6 1/6 1/6 1/6 1/6 0\ [m
0 0 1/6 1/6 1/6 1/6 1/6 1/6| | ps
0 0o 0 1/6 1/6 1/6 1/6 2/6| | ps
0o 0 0 0 1/6 1/6 1/6 3/6| | pa
0 0 0 0 0 1/6 1/6 4/6| |ps
0 0 0 0 0 0 1/6 5/6||pe
o0 0 0 0 0 0 1]|]p
00 0 0 0 0 0 1/ \ps

If youinsistonlandingexactly on square8 to win, thetransformatiormatrix changedo this:

1/6 1/6 1/6 1/6 1/6 1/6 0\ [m
0 1/6 1/6 1/6 1/6 1/6 1/6| [ p
1/6 1/6 1/6 1/6 1/6 1/6 | | ps
0 2/6 1/6 1/6 1/6 1/6| | ps
0 3/6 1/6 1/6 1/6| | ps
0 0 4/6 1/6 1/6| | ps
0 0 0 5/6 1/6||pr
0 0 0 0 1/ \p

o

SO OO O OO

0
0
0
0
0
0

[l en B en B e

In the situationwherethereare various“go to” squaresthereis no chanceof landingon them. As the problemis
originally statedjt is impossibleto landon square¥, 99,and58, sothereappeato beonly 97 possibleplacedo stop.
But therearereally two statesfor eachof squares33 and 72—youeitherjust landedthere,or you landedthereand
have waitedaturn. Thereare3 statedor squareb0—justlandedthere,waitedoneturn, andwaitedtwo turns. Thus,
thetransitionmatrix containsl01terms:100 — 3 + 1+ 1 4+ 2 = 101.

2.5 Graph Routes
Imaginea situationwherethereare7 possiblelocations:1, 2, ... , 7. Thereareone-way streetsconnectingvarious

pairs.For example,if youcangetfrom location3 to location7, therewill beastreetabeled(3, 7). Hereis acomplete
list of thestreets:
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(1,2), (1,7), (2,3), (2,4), (2,5), (3,6), (4,5), (4,6), (5,6), (5,7), and(6, 7), (7, 1).

If youbegin onlocationl, andtake 16 stepshow mary differentroutesaretherethatputyou on eachof thelocations?
(The discussiorthat follows will be mucheasierto follow if you draw a picture. Make a circle of 7 dots,labeled1
through7, andfor eachof the pairsabove,drav anarrow from thefirst dot of the pairto thesecond.)

Thistime, we canrepresenthe numberof pathsto eachlocationby a columnvector:

D
D2
D3
D4,
D5
De
b7

wherep; is the numberof pathsto locationi:. Theinitial vectorfor time=0hasp; = 1 andps = p3 = py = p5 =
ps = pr = 0. In otherwords, afterzerostepsthereis exactly onepathto location1, andno pathsto otherlocations.
You canseethatif you multiply thatinitial vectorby the matrix once,it will shov exactly onepathto 2 andonepath
to 7 andno otherpaths.

Thetransitionmatrix lookslik e this:

000000 1\ /;
100000 0f][pe
010000 0|]ps
010000 0]|]|ps 4)
010100 0|]ps
001110 0|]pe
100011 0/ \p

whichwill generatehe countof the numberof pathsin n + 1 stepsf theinputis the numberof pathsat stepn.
If thematrix ontheleft of equation(4) is called P, thenafter 16 stepsthecountswill begivenby:

D
D2
D3
plé D4
D5
De
D7

Fromacomputerhereis P6:

481 440 104 280 292 188 288
288 293 72 192 176 104 188
188 184 48 125 120 72 104
188 184 48 125 120 72 104
292 300 77 203 197 120 176
384 404 107 281 280 173 264
728 676 188 480 476 288 481
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Sinceinitially p; = 1 andps = ps = p4 = p5s = pg = pr = 0, we have:

> 481 440 104 280 292 188 288\ (1 481
Do 288 293 72 192 176 104 188 | [0 288
D3 188 184 48 125 120 72 104 |0 188
P |p, | =188 184 48 125 120 72 104||o| =|188],
s 292 300 77 203 197 120 176 | |0 292
Do 384 404 107 281 280 173 264 |0 384
pr 728 676 188 480 476 288 481/ \0 728

sothereare481routesto location1, 288routesto location2, 188routesto location3, andsoon.

Thisis, of courseyery difficult to check.Why don’t you checktheresultsfor P2—threesteproutes.Thecorrespond-
ing equationfor only 3 stepss:

o) 011210 1\ /1 0
Do 100 011 0]]o0 1
Ps3 0000O0O0OT1]]o0 0

Pl p, =10 00000 1]/|0]l=]0
Ps 100 000 1f]o0 1
De 3100000]]0 3
7 2 40111 0/\0 2

Sothereis nowayto getto locationl in threestepspnewayto getto location2: (1 —+ 7 — 1 — 2), nowaysto getto
locations3 or 4, onewayto getto location5: (1 — 2 — 4 — 5), threewaysto getto location6: (1 — 2 —+ 3 — 6),
(1—-2—4—6),and(l - 2 —» 5 — 6), andfinally, two waysto getto location7: (1 - 2 —+ 5 — 7) and
1=-7=1->7).

Obviously, thereis nothingspecialaboutthe setof pathsandnumberof locationsin the problemabove. For any given
setup,you just needto work out the associatedransitionmatrix andyou’re in business.Evenif thereare“loops”—
pathsthatleadfrom alocationto itself—thereis no problem.A loopwill simply generatanentryof 1 in thediagonal
of thetransitionmatrix.

14



