
Benford’s Law: Theory and Extensions
Austin Shapiro – Berkeley Math Circle – September 6, 2016

Logarithms of Powers of 3

n log10(3
n)

0 0.0000
1 0.4771
2 0.9542
3 1.4314
4 1.9085
5 2.3856
6 2.8627
7 3.3398
8 3.8170
9 4.2941

n log10(3
n)

10 4.7712
11 5.2483
12 5.7255
13 6.2026
14 6.6797
15 7.1568
16 7.6339
17 8.1111
18 8.5882
19 9.0653

n log10(3
n)

20 9.5424
21 10.0195
22 10.4967
23 10.9738
24 11.4509
25 11.9280
26 12.4052
27 12.8823
28 13.3594
29 13.8365

n log10(3
n)

30 14.3136
31 14.7908
32 15.2679
33 15.7450
34 16.2221
35 16.6992
36 17.1764
37 17.6535
38 18.1306
39 18.6077
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Figure 1. The “wheel”, a circular number line.
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Table of Logarithms

x log10 x log10(x+ 1)− log10 x
1 0.0000 0.3010
2 0.3010 0.1761
3 0.4771
4
5
6
7 0.8451
8
9
10 1.0000 —

Logarithmic Number Lines
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What Kinds of Data?

An infinite sequence of numbers x1, x2, x3, . . . satisfies Benford’s Law in base 10 if, for each
digit 1 ≤ d ≤ 9, the proportion of x1, x2, . . . , xn beginning with digit d approaches a limit of
log10(d+ 1)− log10 d as n→∞.

A finite set of data can’t exactly satisfy the definition above, but may come close, like the populations
of California counties did.

Which sequences and sets below do you expect to satisfy Benford’s Law (exactly or approxi-
mately)?

Powers of π � Yes � No

Powers of 3
√

10 � Yes � No
Primes � Yes � No
Perfect squares � Yes � No
Factorials � Yes � No

Street addresses � Yes � No
Heights of human beings in inches � Yes � No
Phone numbers � Yes � No
All the numbers in all the spreadsheets created

by the accounting offices of a large company � Yes � No

Figure 2. Frequency with which the numerals 173, 273, 373, ..., 973 have appeared
in print over time, as a percentage of words or word-like tokens. (Source: Google
Ngram Viewer)
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Histogram of County Populations
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Figure 3. A normal distribution sliced at regular intervals, and the slices stacked.
The tickmarks underneath show a logarithmic scale.
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Proving Benford’s Law for Powers of 10α (α 6∈ Q)

Proposition 1. If n is a positive integer and α = log10 n is not an integer, then α is irrational.

Definition. Let x be a real number. The integer part of x, denoted by bxc, is the greatest integer
less than or equal to x. The fractional part of x, denoted by {x}, is defined to be x − bxc. For
example, b3.85c = 3 and {3.85} = .85, while b−1.7c = −2 and {−1.7} = .3.

Definition. The wheel1 is a circle of unit circumference formed by joining the ends of the interval
[0, 1] so that numbers increase in the counterclockwise direction (see the diagram on page 1). Every
real number x is assigned the point on the wheel corresponding to {x}.
The distance d(x→ y) is defined as the length of a counterclockwise arc on the wheel from the point
representing x to the point representing y. For example, d(.1 → .7) = .6, while d(.7 → .1) = .4.
(We could equivalently define d(x→ y) as {y − x}.)
Definition. Let A be a set of points on the wheel. Then A is dense on the wheel if every arc of
positive length on the wheel contains at least one point from A.

Notice that a dense subset of the wheel is necessarily infinite, but an infinite subset is not necessarily
dense. (Does a dense set necessarily include all points on the wheel?)

Proposition 2. Let A = {0, {α}, {2α}, {3α}, . . .}. Then we have two cases:

(i) If α is rational, let α =
p

q
in lowest terms. Then A =

{
0,

1

q
,
2

q
, . . . ,

q − 1

q

}
.

(ii) If α is irrational, then A is dense on the wheel.
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Figure 4. Multiples of α = 3/8 (left), α = 1/(2π) (right). I stopped at 31α, but
if we continued going around the circle on the right drawing dots of some positive
thickness, the dots would eventually darken the whole circle.

1The wheel is more formally known as R/Z.
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Proposition 3 (Equidistribution Theorem).

Let α be irrational. For each integer n ≥ 1, let An = {0, {α}, {2α}, {3α}, . . . , {(n − 1)α}}. Let I
be an arc of length t on the wheel. Then

lim
n→∞

|An ∩ I|
n

= t.

The Equidistribution Theorem says that, in the long run, the proportion of multiples of α whose
fractional parts lie in a given interval is proportional to the size of the interval. For example, the
proportion of multiples of

√
2 whose fractional parts are between 0.33 and 0.37 approaches 0.04.

Essentially, the multiples of α “cover the circle evenly”.

Corollary. Let n be a positive integer which is not a perfect power of 10, or more generally
let n = 10α where α is irrational. Then the sequence 1, n, n2, n3, . . . satisfies Benford’s Law in
base 10.

Extensions and Problems

1. What is the analogous statement of Benford’s Law in base b?

2. For sequences like 1, n, n2, . . ., is there a limiting distribution for the second digits? Third digits?
Last digits? All digits?

3. You think the body lengths in millimeters of all the animals in the forest (from tiny insects to
large mammals) might obey Benford’s Law, but your uncle doesn’t believe it; he insists that first
digits from 1 to 9 should appear about equally often. Short of actually gathering the data, how
could you show him that he’s being awfully silly?

4. Let α be an arbitrary irrational number. We know that there’s a multiple of α whose fractional
part is between 0 and 0.001 (say). How would you go about finding such a multiple? (Ideally,
you wouldn’t test every multiple in order; that could take a long time.)

5. There’s a special way to do the previous problem if α =
√

2. As a hint, 0 < (
√

2− 1)8 < 0.001.
How does this lead you to a multiple of

√
2 that fits the bill? Does this trick work for any other

irrational numbers?

? 6. Take a close look at the right side of Figure 4. The dots divide the circle into 32 arcs; those arcs
are not all the same length, but many of them are the same length. How many different lengths
of arc are there?

A theorem of Steinhaus says that the points of An (as defined in Proposition 3) always cut the
wheel into arcs of at most a certain number of different lengths—the number you found in this
example. For a big challenge, try proving the theorem.

? 7. Investigate the sequences listed on page 3, or your favorite sequences. Which ones satisfy Ben-
ford’s Law? Can you prove it?
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A Problem Dr. Shapiro Can’t Solve

Does the sequence of all positive integers satisfy Benford’s Law?

That may sound ridiculous—surely the integers as a whole use every first digit from 1 to 9 equally.
But really, it depends on your stopping point:

• Only 11 out of the first 99 positive integers start with 1. That’s a proportion of 1
9
.

• But 111 out of the first 199 positive integers start with 1. That’s well over half!

Stopping at 199 may seem biased and arbitrary, but then, stopping at 99 is also biased. Of all
stopping points, 99 (or any number composed of all 9’s) yields the lowest possible proportion of
initial 1’s. If you stop anywhere else, there will be more numbers up to that point that start with
1’s than 9’s.

Unfortunately, there’s no neutral way to pick a stopping point. There is no such thing as a “random
positive integer” (at least, not if you want every integer to have equal probability of being chosen).
And if we look at the proportion of the first n integers that begin with a given digit, this proportion
doesn’t approach a limit as n→∞; it just oscillates between two bounds.

But I had another idea.

Let S be some subset of the positive integers—perhaps, the ones that begin with 1. Define

χS(n) =

{
1 if n ∈ S
0 if n 6∈ S .

Then let

d
(1)
S (n) =

χS(1) + χS(2) + · · ·+ χS(n)

n
.

Got that? d(1)(n) is simply the proportion of integers from 1 to n that belong to S. But now we
average again:

d
(2)
S (n) =

d
(1)
S (1) + d

(1)
S (2) + · · ·+ d

(1)
S (n)

n
And again:

d
(3)
S (n) =

d
(2)
S (1) + d

(2)
S (2) + · · ·+ d

(2)
S (n)

n

... and so on. Each time we average, the new function is smoother than the old one (see Fig. 5).

Thus, for S = {numbers that start with 1}, d(1)S (n) repeatedly oscillates between 0.11 and 0.56,

but d
(2)
S (n) only oscillates (after a while) between 0.23 and 0.36, and d

(3)
S (n) oscillates in an even

narrower range.

Does the (eventual) range of d
(k)
S (n) close in on log10 2 (≈ 0.301) as k →∞? It appears so; in fact,

I’ve calculated d
(k)
S (n) for a variety of sets S (e.g., numbers that start with 3 in base 5), and when k

and n are large enough, the results always look like Benford’s Law. But I don’t know how to prove
it!

Maybe you’ll have an idea that could crack this problem. If so—or if you want to discuss
anything else in this handout—just drop me a line at ashapiro (dot) proofschool (dot) org!
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Figure 5. The averaging process makes each function smoother than the last. The
graph on the right shows the first 10,000 values of each function.


