Patterns and Connections

Ted Courant Berkeley Math Circle 9 February, 2016 tcourant@bentleyschool.net

Square Numbers and The Pythagorean Theorem

Recall the difference of squares identity: $a^2 - b^2 = (a - b)(a + b)$.

First, we use the identity in the form $a^2 = (a - b)(a + b) + b^2$ to mentally compute the values of squares. The key question is: what multiple of 10 is nearest our number?

Example $17^2 = (17 + 3)(17 - 3) + 3^2$, which equals $20 \cdot 14 + 9 = 289$.

Example $41^2 = (41 - 1)(41 + 1) + 1^2 = 40 \cdot 42 + 1 = 1681.$

Exercise 1: compute the squares of 18, 19, 27, 29, 49, 98, 99.

Next we will use the identity to verify that we have Pythagorean Triples, i.e. numbers a, b, and c such that $a^2 + b^2 = c^2$. In these examples we do not need to know the values of the squares!

Verify that $20^2 + 21^2 = 29^2$. We compute $29^2 - 21^2 = 8 \cdot 50 = 16 \cdot 25 = 20^2$

- 1. Show that the following are Pythagorean Triples: 99-101-200, 60-61-11, 8-15-17, 16-63-65.
- 2. Let $a = m^2 n^2$, b = 2mn, and $c = m^2 + n^2$. Prove that $a^2 + b^2 = c^2$.

We will show that all pythagorean triples are of the form $m^2 - n^2$, 2mn, $m^2 + n^2$ for some pair of integers m and n. This makes finding Pythagorean triples suited to using a multiplication table (provided here for your convenience).

1	2	3	4	5	6	7	8	9	10	11	12
2	4	6	8	10	12	14	16	18	20	22	24
3	6	9	12	15	18	21	24	27	30	33	36
4	8	12	16	20	24	28	32	36	40	44	48
5	10	15	20	25	30	35	40	45	50	55	60
6	12	18	24	30	36	42	48	54	60	66	72
7	14	21	28	35	42	49	56	63	70	77	84
8	16	24	32	40	48	56	64	72	80	88	96
9	18	27	36	45	54	63	72	81	90	99	108
10	20	30	40	50	60	70	80	90	100	110	120
11	22	33	44	55	66	77	88	99	110	121	132
12	24	36	48	60	72	84	96	108	120	132	144

3. Notice that 20-21-29 form the sides of a very nearly isosceles right triangle. Can you find other nearly isosceles right triangles, namely ones whose legs differ by 1?

Squangular Numbers

Recall that the *n*th triangular number is given by $T_n = \frac{n(n+1)}{2}$. Here is a list of the first 10 triangular numbers:

1 3 6 10 15 21 28 36 45 55

1. I used the formula $\frac{n(n+1)}{2}$ to make the list

Try to find another way of generating the list.

2. Notice that the triangular numbers 1 and 36 are also perfect squares. Such numbers are called *Squangular*. Are there other triangular numbers that are squares.

Suppose that the triangular number $T_{n-1} = \frac{n(n-1)}{2}$ is also a perfect square: $\frac{n(n-1)}{2} = m^2$. Here is a way of finding another Squangular number:

 $\frac{n(n-1)}{2} = m^2 \Longrightarrow 4 n^2 - 4 n = 8 m^2 \Longrightarrow 4 n^2 - 4 n + 1 = 8 m^2 + 1 \Longrightarrow (2 n - 1)^2 = 8 m^2 + 1.$

Then $T_{8 m^2}$ is a perfect square! Why? $\frac{8 m^2(8 m^2+1)}{2} = 4 m^2(2 n - 1)^2$, which is a perfect square. 3. Given that T_1 is a perfect square, verify that T_8 is a perfect square, too.

What it the next Squangular number given by $T_{8 m^2}$?

$\sqrt{2}$ and Theon's Ladder

Theon's Ladder generates pairs of numbers whose ratios approximate $\sqrt{2}$. The ladder is shown below.

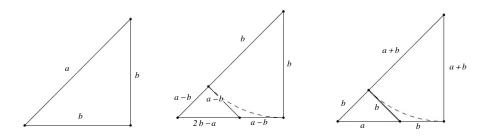
а	1	3	7	17	41	99	239	577	1393	3363
b	1	2	5	12	29	70	169	408	985	2378

1. I used the recursion relation $a_{n+1} = 2 a_n + a_{n-1}$ to generate each row. Try to find a different pattern that generates the ladder.

Notice that in each column $a^2 - 2b^2 = \pm 1$.

If $\frac{a}{b} \approx \sqrt{2}$, then $a^2 \approx 2b^2$, so the table provides *best* approximations for $\sqrt{2}$ in the sense that the difference $a^2 - 2b^2$ is ± 1 , which is as small a difference as can be.

- Prove that $a^2 2b^2 = \pm 1 \implies (a + 2b) 2(a + b)^2 = \mp 1$. 2. (This is just algebra)
- Use the first two diagrams below to show that $\sqrt{2}$ is irrational: if $\sqrt{2} = \frac{a}{b}$ as in the triangle on the left, 3. then we get a smaller triangle and the approximation $\sqrt{2} = \frac{2b-a}{a-b}$. This leads to what Archimedes called infinite descent. Why does this prove that there is no first triangle at all?



Show that for $m = a_n \cdot b_n$, then m^2 is a Squangular number! For example, $36 = \frac{8 \cdot 9}{2}$. 4. In the third column we get $5 \cdot 7 = 35$, and $35^2 = 7^2 \cdot 5^2 = \frac{49 \cdot 50}{2}$. Prove that this always works.

In fact, this gives us all Squangular numbers.