GAUSSIAN INTEGER KENKEN

Nothing says KenKen variants must use plain old integers! The symbol $\mathbb{Z}[i]$ denotes the Gaussian integers, i.e. combinations of integers and integer multiples of the complex number $i=\sqrt{-1}$. That is $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$.

In the Gaussian integers, some things we took for granted before are now a bit crazy. Even though 2 is a prime number in \mathbb{Z}, there are multiple ways to factor it in $\mathbb{Z}[i]$. For example, $2=1 \cdot 2$, but also $2=(1+i)(1-i)$.

Before you can make good progress on Gaussian integer KenKen, you should probably brush up on Gaussian integer multiplication. The set $\{1,2,1+i, 1-2,1+2 i, 1-2 i\}$ is just a small subset of $\mathbb{Z}[i]$, but it's enough to make some nice 6×6 KenKen puzzles. Before you get started, make an addition table, and a multiplication table for this set. (Some of the results from addition and multiplication may land outside this set, but that's not a problem here.)

+	1	2	$1+\mathrm{i}$	$1-\mathrm{i}$	$1+2 \mathrm{i}$	$1-2 \mathrm{i}$
1						
2						
$1+\mathrm{i}$						
$1-\mathrm{i}$						
$1+2 \mathrm{i}$						
$1-2 \mathrm{i}$						

\times	1	2	$1+\mathrm{i}$	$1-\mathrm{i}$	$1+2 \mathrm{i}$	$1-2 \mathrm{i}$
1						
2						
$1+\mathrm{i}$						
$1-\mathrm{i}$						
$1+2 \mathrm{i}$						
$1-2 \mathrm{i}$						

The puzzles on the next page are from John J. Watkins' paper Triangular Numbers, Gaussian Integers, and KenKen. Once you get a bit of practice solving them, can you create your own 4×4 or 6×6 Gaussian integer KenKen puzzle?

$4 \times$	$3+$	$1+i-$	
			$3+$
	$i-$		
		$2 \times$	
$2 \times$			

(d)

(e)

Figure 4. Solve using the four numbers $1,1+i, 1-i$, and 2.

$4+$			$3+$		
$5 \times$	$2 \times$		$i \div$	$1+2 i-$	
				$i-$	$2-2 i \times$
$3 i-$		$1+2 i-$			
$2+2 i \times$	$4 \times$		$5 \times$	$3+$	

(f)

Figure 5. Solve using the six numbers $1,1+i, 1-i, 1+2 i, 1-2 i$, and 2 .

