GAUSSIAN INTEGER KENKEN

Nothing says KenKen variants must use plain old integers! The symbol $\mathbb{Z}[i]$ denotes the *Gaussian integers*, i.e. combinations of integers and integer multiples of the complex number $i = \sqrt{-1}$. That is $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$.

In the Gaussian integers, some things we took for granted before are now a bit crazy. Even though 2 is a prime number in \mathbb{Z} , there are multiple ways to factor it in $\mathbb{Z}[i]$. For example, $2 = 1 \cdot 2$, but also 2 = (1 + i)(1 - i).

Before you can make good progress on Gaussian integer KenKen, you should probably brush up on Gaussian integer multiplication. The set $\{1, 2, 1 + i, 1 - 2, 1 + 2i, 1 - 2i\}$ is just a small subset of $\mathbb{Z}[i]$, but it's enough to make some nice 6×6 KenKen puzzles. Before you get started, make an addition table, and a multiplication table for this set. (Some of the results from addition and multiplication may land outside this set, but that's not a problem here.)

+	1	2	1+i	1-i	1+2i	1-2i	×	1	2	1+i	1-i	1+2i	1-2i
1							1						
2							2						
1+i							1+i						
1-i							1-i						
1+2i							1+2i						
1-2i							1-2i						

The puzzles on the next page are from John J. Watkins' paper *Triangular Numbers, Gaussian Integers, and KenKen.* Once you get a bit of practice solving them, can you create your own 4×4 or 6×6 Gaussian integer KenKen puzzle?

4×	3+	1+ <i>i</i> -		i –	8×	i –		
			3+			4×		
	i –						1- <i>i</i> -	
2×		2×		<i>i</i> –				
	(d)		(e)				

Figure 4. Solve using the four numbers 1, 1 + i, 1 - i, and 2.

4+			3+		
5×	2×		i÷	1+2 <i>i</i> -	
				i –	2–2 <i>i</i> ×
3 <i>i</i> -		1+2 <i>i</i> -			
$2+2i \times$	4×		5×	3+	

(f)

Figure 5. Solve using the six numbers 1, 1 + i, 1 - i, 1 + 2i, 1 - 2i, and 2.