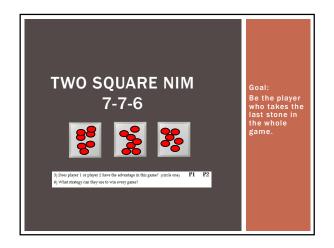
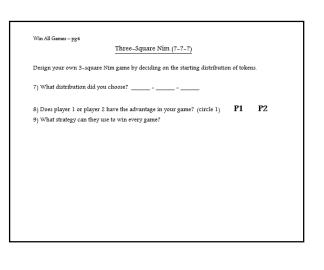


There are many stones distributed among a bunch of squares. On your turn, you can pick ONE square and remove any number of stones The person to take the last stone from the game wins.


I WIN! ;D

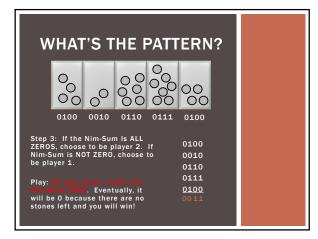

PLAYER 1 WINS!

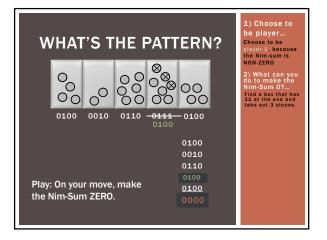
WILL PLAYER **1 ALWAYS** WIN THIS GAME?

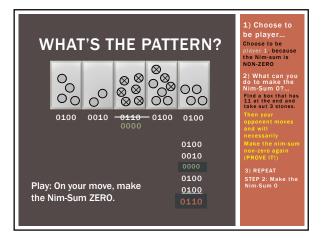
	Two-Square Ni	m 10-10		
	e A and 10 tokens in square			
	only one of the two squares	. The person to take the	e last toke:	n in the
entire game wins.				
1) Does player 1 or pl	yer 2 have the advantage in	this game? (circle one)	P1	P2
Win All Games – pg2				
	Two-Square N	im 7-13		
Put 7 tokens in square	A and 13 tokens in square B	and play with the same	rules as b	pefore.
	une 2 have the advantage in	this game? (circle one)	P1	P2

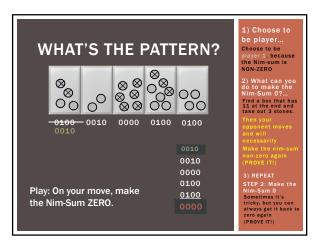
10) Convince yourself that the chart below includes every game with 20 total stones.11) Figure out which player has the advantage for as many games as you can.12) What pattern(s) do you see and what strategies do the players need to know?

20-0-0						
19-1-0						
18-2-0	18-1-1					
17-3-0	17-2-1					
16-4-0	16-3-1	18-2-2				
15-5-0	15-4-1	15-3-2				
14-6-0	14-5-1	14-4-2	14-3-3			
13-7-0	13-6-1	13-5-2	13-4-3			
12-8-0	12-7-1	12-8-2	12-5-3	12-4-4		
11-9-0	11-8-1	11-7-2	11-8-3	11-5-4		
10-10-0	10-9-1	10-8-2	10-7-3	10-8-4	10-5-5	
		9-9-2	9-8-3	9-7-4	9-8-5	
				8-8-4	8-7-5	8-8-6
						7-7-6


Binary – Base			8, 9) in school, but instead, only 2 (0, and 1)?
		of the numbers that only co	
D: 0	8:	16:	SPICY CHALLENGE
l: 1	9.	17.	What do you think the
2: 10	10.	18:	100 th such number will be?
3: 11	11.	18.	100 such manber win be.
1 100	12	20	
5.	13.	21:	100-
6.	14:	22:	101:
7:	15.	23.	102;

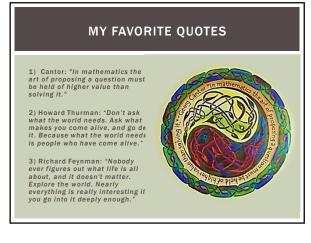

	BINARY	
THIS IS BINARY:	What's going on? In short, we're using a bare	system
1 = 0001 2 = 0010 3 = 0011 4 = 0100 5 = 0101 6 = 0110 7 = 0111 8 = 1000 9 = 1001 10 = 1010	The short, we could be a subset to write numbers instead of Base 10 3254 means "three thousands, two hundreds, five tens, and four ones" Base 1101 means "one 8, one 4	
10 = 1010 11 = 1011 Etc.	no 2s and one 1" AKA, it means 13	


	0							
	0	1	2	3	4	5	6	7
Base 10								
Base 2								
# in base 10 2 20 3 8 16 23 64 63 127			in base 2 4s 16s 	1	are the c 45 23		3)	


20 - 10100				
0 - 00000				
0 - 00000				
19 - 10011				
1 - 00001				NIM IN
0 - 00000				BINARY
18 - 10010	18 - 10010			Can we fin
2 - 00010	1 - 00001			pattern to
0 - 00000	1 - 00001			which gam are won by
17 - 10001	17 - 10001			player 2?
3 - 00011	2 - 00010			
0 - 00000	1 - 00001			
16 - 10000	16 - 10000	16 - 10000		
4 - 00100	3 - 00011	2 - 00010		
0 - 00000	1 - 00001	2 - 00010		
15 - 01111	15 - 01111	15 - 01111		
5 - 00101	4 - 00100	3 - 00011		
0 - 00000	1 - 00001	2 - 00010		
14 - 01110	14 - 01110	14 - 01110	14 - 01110	
6 - 00110	5 - 00101	4 - 00100	3 - 00011	
0 - 00000	1 - 00001	2 - 00010	3 - 00011	


WHAT'S THE PATTERN?	
Step 1: Write out the number of stones in each box in binary. (= ????) Step 2: Put these numbers 0010 This is in a column and figure out 0110 called	
column is even or odd. If 0111 the it's even, write 0 at the 0111 the bottom, if it's odd write 1 0100 0011	

Solving Nim
The Num-Sum of a game is 0 the Considering the number of stones in each pile written in binary, in every place value, there are an even number of 1's
The games that can be won by player 1 are. Games in which the initial Nim-Sum is non-zero.
The games that can be wen by player 2 are. Games in which the initial Nim-Sum is 0.
An Invariant is
Intuitive definition (describe it in simple word).
Something that stays the same.
Rigorous definition (the precise mathematical definition).
A property, held by a class of mathematical objects, which remains unchanged when transformations of a certain type are applied to the objects.



CONTACT INFO

My name: Zandra Vinegar My email: <u>ch3cooh@alum.mit.edu</u>

> If you want the presentation, just email me! Thanks! And have a great week!

