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1 Introduction

The billiard theory in an active and exciting domain which is closely related to a variety of
mathematical fields, like dynamical systems, geometry, group theory, complex analysis, and
so on, and so on. Certainly this is a subject for books' or year long graduate course, rather
than a two-hour presentation at a mathematical circle. My current presentation will consist
of several loosely related to each other parts; they can be read and understood independently,
except the construction discussed below in this Introduction, which will be used in many
subsequent sections. I will demonstrate several exciting results of the theory. With a few
exceptions, I will present almost (or entirely) no proofs: interested reader can fill some gaps
using literature or Internet.

For a billiard table, we take an arbitrary polygonal domain in the plane. (We will also
consider billiard tables bounded by arbitrary smooth curves, or “multistore” billiard tables
not fully embedded into the plane: see Sections 6 and 7.) We assume that there are no
pockets. Place a billiard ball at an arbitrary point and push it in some direction. The ball
moves along a straight line until it reaches the wall (the boundary of the domain) where it
reflects according to the usual rule “the angle of incidence equals the angle of reflection”.
In the assumption of zero friction and infinite elasticity, the ball moves along a polygonal
billiard trajectory which never ends (we always assume the ball to be measureless and the
trajectory to never hit a vertex).

Notice that from the point of view of Dynamical Systems, the most natural question
concerns closed trajectories. A closed trajectory is a trajectory which, after several reflection
repeats itself. A closed trajectory looks like a closed polygon rather than an infinite polygonal
line.

It is convenient to visualize billiard trajectories using the following developments (see
Figure 1). We move along the trajectory, and when we reach the edge of the polygon, we
reflect in this edge the whole polygon. The trajectory in extended to the reflected polygon
as a straight line. When we reach the next edge, we again make a reflection of the (already
reflected) polygon, and the trajectory is extended to the next polygon again as a straight

!Speaking of books, I can recommend the following: S. Tabachnikov, “Geometry and Billiards”, Student
Mathematical Library, 30, Amer. Math. Soc., 2005



line. Proceeding in this way, we convert our trajectory into a straight segment (or a half
line, if it is infinite), and this segment is determined by and determines the trajectory.
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Figure 1: Development of a billiard trajectory

2 Billiard trajectories in a rectangular billiard

On a rectangular billiard table, mark two points, A and B. Let a billiard ball be at the point
A. We want to push it in some direction in such a way that, maybe, after a certain (finite)
number of reflections, it arrives at the point B. It is not to find all billiard trajectories
starting at A and ending at B, and, in particular, to prove there are infinitely many such
trajectories.

The construction is shown in Figure 2. We take our rectangle and reflect it in all its
sides; then we do the same with the rectangles obtained, and so on. We obtain in the plane
a rectangular lattice. We also apply all our reflections to the point B (and its images), so
every cell of our lattice will contain an image of the point B. Now, if we join the point A (in
the initial rectangle) with any of these points B, we will get infinitely many straight segment,
and every one will be a development of some billiard trajectory (see Section 1) starting at
A and ending at B, as shown in the bottom drawing in Figure 2.

This lattice construction also yields a classification of closed billiard trajectories in a
rectangular billiard. Take an arbitrary (almost arbitrary: we do not want that the treajectory
hits a vertex) starting point in the rectangle ABCD (see Figure 3) and consider a billiard
trajectory whose development has a “rational” direction, that is, a direction of the vector
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p-AB+q-AD where p and ¢ are two integers, not both zeroes (we can assume them relatively
prime).
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Figure 2: Billiard trajectories AB in the rectangular billiard
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The trajectory in Figure 3 to the direction vector 3- AB + 8- AD.

3 Triangular billiards

Next, we consider a billiard which has the shape of an arbitrary triangle. We will concentrate
ourselves on one question: does this billiard has a closed trajectory. The answer shows how
little our knowledge of polygonal billiards is: it is not known.

Still, there exists a classical construction (Giovanny Fagnano, 1755) of very short closed
billiard trajectory for arbitrary acute triangles. It runs as follows.

Let ABC' be an acute triangles, and let AD, BE, and CF be the three altitudes. Then
DEF is a closed billiard trajectory (see Figure 4, left).
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Figure 3: A closed billiard trajectory in the rectangular billiard

The proof of this result is shown in Figure 4, right. We need to show that the altitudes of
AABC are bisectors of the triangle formed by the bases D, E, F' of the altitudes. Let «, 3,
and v are the angles of AABC. Since the angles ZADB and ZAEB are right, the points
D and F belong to the semicircle with the diameter AB. From this, ZADE = ZABE
(two inscribed angles subtending the same arc) and, similarlyy, /DEB = ZDAB. But
/ABE = 90° — a and ZDAB = 90° — (3. This provides a computation of ZADFE and
/DFEB, and, in turn, proves the formulas for the six angles shown in Figure 4, left. This
completes the proof of our statement.
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Figure 4: Fagnano closed billiard trajectory

There acute triangle possesses other closed billiard trajectories. A six-gonal one is shown
in Figure 5. (We hope that the reader will understand the construction.)

The case of obtuse, and even right triangles is much more difficult. The best known
result belongs to R. Schwartz who gave in 2008 a computer assisted but rigorous proof of
the fact that if the obtuse angle of an obtuse triangle does not exceed 100°, then the triangle
possesses a closed billiard trajectory. But this trajectory may be very long. R. Schwartz



Figure 5: A “double Fagnano” closed billiard trajectory

proved also that for any L, in any proximity of any triangle with the angles 90°,60°, 30°,
there exists a triangle whose shortest closed billiard trajectory has the length > L. Nobody
has serious doubts that a closed billiard trajectory exists for any triangle; but no proof of
that has been found, so far.

To finish this section on a more positive note, let us mention the following result. If all
the angles of a polygon have, in degrees, rational measures, then this polygon has “many”
closed billiard trajectories (for example, any choice of an initial point and a direction may
be approximated by points and directions yielding closed trajectories). The proof of this has
some similarity to the proof of this statement for rectangles (Section 2). We will observe
this similarity in the simplest case: when the triangle is equilateral; this is the subject of the
next section.

4 Closed billiard trajectories in an equilateral triangle

Similarly to a rectangular lattice, there exists the standard tiling of the plane by equilateral
triangles. A billiard trajectory in the equilateral triangle is represented by a straight line
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Figure 6: The development of a billiard trajectory in the equilateral triangle




To obtain a closed trajectory, we take two points in the triangularly tiled plane which
occupy the same position in two parallel triangular tiles and join them by a straight segment.
This sehment gives rise to a billiard trajectory which is either closed, or has ends on two
different sides of the triangle. In this last case, the two endpoints are obtained from each
other by a rotation of the triangle, This option is presented in Figure 6. To visualize this,
we label the knots of the tiling by the letters A, B, and C, as shown in Figure 7, left. We
see now that the trajectory begins at a point of the side AB and ends at the point of the
side CA. To get a closed trajectory, we need to repeat the construction 3 times (Figure 7,
right). The trajectory obtained is 18-gonal. It is clear that all closed billiard trajectories in
the equilateral triangle can be obtained in this way.
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Figure 7: The same with knots labeled as A, B,C

Notice in conclusion that if we fold the triangle along the altitude, then the trajectory
constructed above becomes a closed billiard trajectory in a 90° — 60° — 30° triangle (see
Figure 8), and all closed trajectories in the 90° — 60° — 30° triangle are obtained in this way.

folding

Figure 8: Closed billiard trajectory in the 90° — 60° — 30° triangle obtained by folding



5 Veech polygons: closed billiard trajectories in regu-
lar polygons

Consider two billiard trajectories in a polygonal billiard which have two different starting
points, but the same initial direction; we call such trajectories parallel. Notice that parallel
trajectories may look entirely different, even if they are close to each other at the begin-
ning: as soon as a vertex of the polygon appears between the trajectories, they go different
directions and are not close to each other any more.

A polygon is called a Veech polygon, if it has the following property: there are some closed
trajectories; if one of two parallel trajectories is closed, then another one is also closed. In
different words, the property of being closed of a billiard trajectory depends only on the
initial direction. For example, it is not hard to deduce from the results of sections 2 and
4 that rectangles and equilateral triangles are Veech polygon. On the other hand, multiple
examples show that in general, triangles are not Veech polygons.

A classification of Veech polygons is obtained in Veech’s work of 1989. It is shown there,
in particular, that all regular polygons are Veech polygons.

Our observations made in Section 2 show that rectangle have a property additional to
the Veech property: not only two parallel trajectories are simultaneously closed, but if they
are closed, then they have the same length. With rare exceptions (originated from the
construction in Figure 5) parallel closed trajectories have the same length. Is this always
true for Veech polygons? Unexpectedly, the answer to this question is negative.

Let us begin with the case of a regular pentagon. Consider a billiard trajectory starting
at some point (it is convenient to assume that this point is taken on one of the edges) and
forming, at the first moment, the angle  with the side. The fact is that the trajectory arising
will be closed if and only if tanf = (a 4 b¢) sin 36° where a and b are rational numbers and
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o= 2\/_ is the “golden ratio” (by the way, the proof is not elementary and rather hard).
For every such 6, there arise a family of (parallel) closed trajectories, and the lengths of
these closed trajectories have two values. The ratio of the two possible lengths is the same
for all 6: it is ¢. The simplest example is shown in Figure 9.
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Figure 9: Parallel closed billiard trajectories of different lengths in a regular pentagon




If the length of the side of the regular pentagon in Figure 9 is 1, then the lengths of
the two trajectories are 5¢ and 5¢* = 5 + 5¢. (Notice that to avoid two times shorter
trajectories which arise when the reflection points on each side coincide, we need to assume
that the trajectories do not hit not only the vertices, but also the midpoints of the sides.)

Let us formulate now the general fact. For any Veech polygon P, there exists a number
N such that for every family of parallel closed billiard trajectories, there are precisely N
different values for the lengths (again, sometimes we need to exclude a finite number of
“degenerate” trajectories). Moreover, the ratios of these lengths do not depend on the
direction. For example, for rectangles and equilateral triangles this number is one (same
for 90° — 60° — 30° triangles and for regular hexagons); for regular pentagons this number
is two (same for regular octagons). Another example: for regular heptagons, this number
is three. Figures 10 and 11 present two triples of parallel closed billiard trajectories in a
regular heptagon, which have different lengths.
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length ~ 12.6135 length ~ 22.7289
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Figure 10: Parallel closed billiard trajectories in a regular heptagon



length = 67.3276

Figure 11: More parallel closed billiard trajectories in a regular heptagon

(In both cases, we assume that the length of the side of the regular heptagon is one.)
The ratios of the length do not depend on the direction. Namely, if the lengths of the thre
trajectories are f, g, and h and f < g < h, then h: g = 2cos(w/7), and g: f = 2cos(27/7).

6 Billiard trajectories in a right angle billiard

Consider now a billiard table, not necessarily convex, with all angles being right. Examples
are shown in Figure 12.(By the way, the last figure shows a billiard table which is embedded
in the plane with an overlapping.) Thus, every angle of our polygons is either 90° or 270°.
This kind of billiards was considered in a recent work of Athreya, Eskin, and Zorich.

This kind of billiards was considered in a recent work of Athreya, Eskin, and Zorich.
They considered the following problem. Take two vertices, say a and b. Let the angles at A
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Figure 12: Right angle billiard tables

and B be a and  (thus each of o and f3 is either 90° or 270°). For some (big!) number L,
denote by N (L) the number of billiard trajectories of length < L, which join a with b. How
to estimate N(L)? The authors prove that the limit

 N(L)
P

A,

where A is the area of the billiard, is equal to:

1

—, if a = 3 =90°;

%7?

= if « =90°, 3 = 270°;
1

—6, if = =270°.
3T

It looks absolutely unexpected that the result depends only on the area of the billiard,
but not the shape of it.

7 Billiard trajectories in an elliptic billiard

Suppose now that our billiard is not polygonal, but is bounded by some smooth curve.
There behavior of billiard trajectories in such billiards was studied a lot; still, not too much
is known about it. A substantial information was obtained in the case, when the bounding
curve is an ellipse. We will consider this case here.

I begin with a couple of pictures, and then will give some explanation. Each of Figures
13 and 14 presents one billiard trajectory: the left drawing presents a shorter piece of it, and
the right drawing presents a longer piece. (Actually, both trajectories are infinite.)

We see that all the edges of the trajectory are tangent, in the first case, to a smaller
ellipse, and in the second case, to a hyperbola. To say more about it, let me remind that
ellipses, as well as hyperbolas, have foci. An ellipse is a locus of point with a given sum of
distances from the foci; a hyperbola is a locus of points with a given difference of distances
from the foci. Two ellipses, or an ellipse and a hyperbola, or two hyperbolas, may be confocal
which means that they have the same pair of foci. Now the result:
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Figure 14: Another billiard trajectory in an elliptic billiard

All edges of a billiard trajectory in an elliptic billiard, which does not pass through the
foci, are tangent either to an ellipse or to a hyperbola confocal to the boundary ellipse of
the billiard.

How to learn which one? It is very easy. Assume that the starting point of the trajectory
lies on the boundary of the table. Take the very first edge of the trajectory. If it passes
between the foci, then the edges of the trajectory are tangent to a hyperbola, otherwise they
are tangent to an ellipse.

And what happens, if the first edge passes through a focus? Then all the edges pass
through foci: the first, the second, the first, the second, and so on. (I do not provide a
picture, because it looks ugly.)
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