
AROUND (1 +
√

2)n

1. Calculator tricks. Let us take a simple pocket calculator and compute 1-st,
2-nd, 3-rd, and so on, powers of the number 1 +

√
2. Here are the results:

1 +
√

2 = 2.414213 . . .
(1 +

√
2)2 = 5.828427 . . .

(1 +
√

2)3 = 14.071067 . . .
(1 +

√
2)4 = 33.970562 . . .

(1 +
√

2)5 = 82.012193 . . .
(1 +

√
2)6 = 197.994949 . . .

(1 +
√

2)7 = 478.002092 . . .
(1 +

√
2)8 = 1153.999133 . . .

(1 +
√

2)9 = 2786.000359 . . .
(1 +

√
2)10 = 6725.999851 . . .

We see that these numbers become closer and closer to integers. Also, we can observe
an alternating: first a number is slightly less than an integer, then slightly more than an
integer, then again less, then again more, and so on. WHY?

Before answering this question, let us look at a different calculation. Take the same
powers of 1 +

√
2 and divide them by

√
2. We observe the following:

(1 +
√

2)/
√

2 = 1.707106 . . .
(1 +

√
2)2/

√
2 = 4.121320 . . .

(1 +
√

2)3/
√

2 = 9.949747 . . .
(1 +

√
2)4/

√
2 = 24.020815 . . .

(1 +
√

2)5/
√

2 = 57.991378 . . .
(1 +

√
2)6/

√
2 = 140.003571 . . .

(1 +
√

2)7/
√

2 = 337.998521 . . .
(1 +

√
2)8/

√
2 = 816.000613 . . .

(1 +
√

2)9/
√

2 = 1969.999746 . . .
(1 +

√
2)10/

√
2 = 4756.000105 . . .

We observe the same close-to-integer pattern. Again, WHY? The explanation is very
simple.

2. Here is WHY. We all know that there is a formula for (1 + x)n, the so called
Newton’s binomial formula. We, actually, do not need this much. All we need, is the fact
that (1 + x)n is a degree n polynomial with integer coefficients. For example,

(1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x4 + x5.

Plug into this formula x =
√

2 and then x = −
√

2 (using the fact (
√

2)2 = 2, (
√

2)3 =
2
√

2, (
√

2)4 = 4, (
√

2)5 = 4
√

2):

(1 +
√

2)5 = 1 + 5
√

2 + 20 + 20
√

2 + 20 + 4
√

2,

(1 −
√

2)5 = 1 − 5
√

2 + 20 − 20
√

2 + 20 − 4
√

2.
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Add up these two equalities. All the square roots cancel, and we get:

(1 +
√

2)5 + (1 −
√

2)5 = 82, an integer.

But a similar argumentation can be applied to (1 ±
√

2)n with an arbitrary positive
integral exponent n. We see that the sum (1 +

√
2)n + (1 −

√
2)n is always an integer.

But
∣∣1 −

√
2
∣∣ < 1; hence (1 −

√
2)n is very close to zero. Moreover, the sign of (1 −√

2)n is alternating: −, +,−, +, . . .. From this we deduce that (1 +
√

2)n is almost an
integer, precisely as we observed before; and the alternating pattern described above is
also confirmed.

Now let us turn to the division by
√

2:

(1 +
√

2)5√
2

=
1√
2

+ 5 + 20
√

2 + 20 +
20√
2

+ 4,

(1 −
√

2)5√
2

=
1√
2
− 5 + 20

√
2 − 20 +

20√
2
− 4.

All is as before, only instead of the addition, we do the subtraction:

(1 +
√

2)5√
2

− (1 −
√

2)5√
2

= 58, an integer.

We do the same for an arbitrary n and conclude that
(1 +

√
2)n

√
2

− (1 −
√

2)n

√
2

is always

an integer, so
(1 +

√
2)n

√
2

is almost an integer.

Let us notice that these arguments can be applied not only to 1 +
√

2. For example,

the numbers (1 +
√

3)n and
(1 +

√
3)n

√
3

will again be “almost integers” (although, since
√

3 − 1 is not so close to zero as
√

2 − 1, the difference between 1 +
√

3 and the nearest
integer will tend to zero not so fast as the similar difference for 1+

√
2). In the same time,

(1 +
√

5)n is not expected to be close to an integer, while (2 +
√

5)n is very close to an
integer. Here are some computations confirming these observations:

(1 +
√

3)10 = 23167.955801 . . .

(1 +
√

5)10 = 125943.674246 . . .

(2 +
√

5)10 = 1860497.999999463 . . .

(1 +
√

3)10√
3

= 13376.025518 . . .

(2 +
√

5)10√
5

= 832040.00000024 . . .
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3. What are these integers? Thus, the numbers (1 +
√

2)n and
(1 +

√
2)n

√
2

(and

some other similar numbers) are very close to integers. Then it is permissible to ask, TO
WHAT INTEGERS are they close? Let us have a look at these integers.

n = 1 2 3 4 5 6 7 8 9 10
————————————————————————————————
(1 +

√
2)n ≈ 2 6 14 34 82 198 478 1154 2786 6726

(1 +
√

2)n/
√

2 ≈ 2 4 10 24 58 140 338 816 1970 4756

What can be said about these integers? Well, they are all even, but it is not a big
deal: there are so many even integers! A further observation reveals a more interesting
property: in the both sequences, every number (starting with the third one) is equal to
the twice preceding number plus the next preceding number! Look: 14 = 2 · 6 + 2, 34 =
2 · 14+6, 82 = 2 · 34+14, etc. And also 10 = 2 · 4+2, 24 = 2 · 10+4, 58 = 2 · 24 +10, etc.
Certainly, our observation is experimental, it is not a proof. But it is not hard to prove it.
Let us do this.

Actually not only the integers an which approximate bn = (1 +
√

2)n, satisfy the
equation

an+2 = 2an+1 + an,

but the numbers bn themselves satisfy the equation

bn+2 = 2bn+1 + bn.

Indeed,

bn+2 = (1 +
√

2)n+2 = (1 +
√

2)2(1 +
√

2)n = (3 + 2
√

2)(1 +
√

2)n

= (2(1 +
√

2) + 1)(1 +
√

2)n = 2(1 +
√

2)(1 +
√

2)n + (1 +
√

2)n = 2bn+1 + bn.

Turning to an, we notice that since all the numbers an are integers, the difference an+2 −
(2an+1 + an) must be an integer. But it is very close to bn+2 − (2bn+1 + bn) which is zero.
Hence, an+2 − (2an+1 + an) must be zero as well.

For the numbers (1 +
√

2)n/
√

2 we do not need any additional work: the division by√
2 will not spoil the identity bn+2 = 2bn+1 + bn; thus the second sequence of integers has

the same an+2 = 2an+1 + an property.
We can say that the both sequences are similar to the Fibonacci sequence, with the

only difference arising from the coefficient 2 at an+1. So, they are some sort of “super-
Fibonacci numbers.”

4. A formula for super-Fibonacci. Consider a sequence

a0, a1, a2, a3, . . .

of – what? Well, we can say, of integers, but we can assume they being real, or even posibly
complex numbers. Suppose that for every n we have an+2 = K · an+1 + L · an with some
fixed K and L. For example, for the classical Fibonacci sequence, we have K = L = 1,
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while for the sequences considered above K = 2 and L = 1. (Actually, the sequences
above started with a1; to supplement them with a term a0, we must have for the first
sequence 6 = 2 · 2 + a0, so a0 = 6 − 2 · 2 = 2 and for the second sequence 4 = 2 · 2 + a0,
so a0 = 0. By the way, in the classical Fibonacci sequence, a1 = a2 = 1; so, we must have
a0 + 1 = 1 ⇒ a0 = 0.)

For members an of our sequence we have a recursive formula which makes it possible
to calculate all an’s provided that we know a0 and a1. But how to write a direct formula
which allows to find a value of an without knowing values of all the previous terms of the
sequence? This is what we are going to do now.

Our condition for an may be regarded as an infinite sequence of equations,





a2 = Ka1 + La0

a3 = Ka2 + La1

a4 = Ka3 + La2

· · · · · · · · · · · · · · · · · ·

(1)

We know that this system has infinitely many solutions: choose arbitrary values for a0

and a1, and the equations will successively provide values for a2, a3, a4 and so on. Math-
ematicians, when they deal with a problem with multiple solution, often start with an
attempt to find solution in some particular, convenient form. Using this trick, we will try
to find solutions of the infinite system (1) in the following form: an = λn where λ is some
(unknown) number different from 0.

The system (1) becomes






λ2 = Kλ + L
λ3 = Kλ2 + Lλ
λ4 = Kλ3 + Lλ2

· · · · · · · · · · · · · · · · · ·

Since λ %= 0, all these equations are the same; so, the numbers an = λn satisfy our condition
if and only if λ is one of the solutions of the quadratic equation λ2 − Kλ − L = 0.

Suppose that this quadratic equation has two real solutions, λ1 and λ2. Then we have
at least two solutions of the system (1): an = λn

1 and an = λn
2 . But an = Aλn

1 with an
arbitrary real A is also a solution: if an+2 = Kan+1 +Lan, then Aan+2 = KAan+1 +LAan

as well. Equally well, an = Bλn
2 with an arbitrary real B is a solution. Finally, the “sum”

of two solutions is a solution, so

an = Aλn
1 + Bλn

2 (2)

is a solution of the system (1) for arbitrary real A and B. Let us observe now that there
are no other solutions.

Indeed, a solution is fully determined by an arbitrary choice of a0 and a1. For given
a0 and a1, we want to find A and B such that

{
a0 = Aλ0

1 + Bλ0
2 = A + B.

a1 = Aλ1
1 + Bλ1

2 = Aλ1 + Bλ2.
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The solution of this system of equations (with the unknowns A and B) is

A =
a0λ2 − a1

λ2 − λ1
, B =

a0λ1 − a1

λ1 − λ2
. (3)

Thus, the formulas (2) and (3) (with λ1 and λ2 being the solutions of the equation λ2 −
Kλ − L = 0) provide all the sequences {an} with the properties required.

5. Examples old and new. Let us begin with the two sequences considered in the
beginning of this note (Section 1). For the first sequence, 2, 2, 6, 14, 34, 82, . . ., we have:
K = 2, L = 1, a0 = 2, a1 = 2. The solutions of the equation λ2−2λ−1 = 0 are λ1 = 1+

√
2

and λ2 = 1 −
√

2, and formulas (3) give

A =
2(1 −

√
2) − 2

(1 −
√

2) − (1 +
√

2)
= 1 and B =

2(1 +
√

2) − 2
(1 +

√
2) − (1 −

√
2)

= 1.

Thus,
an = (1 +

√
2)n + (1 −

√
2)n

which we know only too well. For the second sequence, 0, 2, 4, 10, 24, 58, . . ., all the numbers
K, L, a0, a1, λ1, and λ2 are the same as before, with only one exception: a0 is 0, not 2. In
this case, formulas (3) give

A =
−2

(1 −
√

2) − (1 +
√

2)
=

−2
−2

√
2

=
1√
2

and B =
−2

(1 +
√

2) − (1 −
√

2)
=

−2
2
√

2
= − 1√

2
.

Thus,

an =
(1 +

√
2)n

√
2

− (1 −
√

2)n

√
2

which we also know.
Next, let us consider the classical Fibonacci sequence, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . ..

In this case, K = 1, L = 1, a0 = 0, a1 = 1, the equation λ2 − λ − 1 = 0 has solutions

λ1 =
1 +

√
5

2
(the “golden ratio”) and λ2 =

1 −
√

5
2

. By formulas (3),

A =
−1

1 −
√

5
2

− 1 +
√

5
2

=
1√
5
, B =

−1
1 +

√
5

2
− 1 −

√
5

2

= − 1√
5
,

whence

an =
1√
5
·
((

1 +
√

5
2

)n

−
(

1 −
√

5
2

)n)

.

This formula for the Fibonacci numbers is very popular: it appears in hundreds of text-
books. We only notice that it may seem amazing that an expression involving so many
square roots of 5 turns out to be an integer.
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Finally, let us notice that the solutions of the quadratic equation λ2 − Kλ − L = 0
are not necessarily irrational: they may be integers. For example, let an+2 = an+1 + 6an.
We will consider two such sequences: with a0 = 0, a1 = 1 and with a0 = 1, a1 = 0:

0, 1, 1, 7, 13, 55, 133, . . . ,
1, 0, 6, 6, 42, 78, 798, . . . .

The solutions of the quadratic equation λ2 − λ − 6 = 0 are λ1 = 3 and λ2 = −2. For the
first sequence, formulas (3) give

A =
−1

−2 − 3
=

1
5
, B =

−1
3 + 2

= −1
5
,

whence
an =

1
5

(3n − (−2)n) =
1
5

(
3n + (−1)n−12n

)
.

For the second sequence,

A =
−2

−2 − 3
=

2
5
, B =

3
3 + 2

=
3
5
,

and
an =

2
5
· 3n +

3
5
· (−2)n =

6
5

(
3n−1 + (−1)n2n−1

)
.

6. The case of complex roots. If all the numbers K, L, an are complex, then the
equation λ2 − Kλ − L = 0 has two complex solutions, and (in the case when they are
different) we can repeat all said in Section 4 without any changes (having in mind that all
the numbers we deal with are complex).

It becomes more interesting, if all K, L, an are real, but the solutions of the equation
λ2 − Kλ − L = 0 are not real. For example, let an+2 = 2an+1 − 3an and a0 = 0, a1 = 1.
The solutions of the equation λ2 − 2λ + 3 = 0 are not real: λ1,2 = 1 ± i

√
2. But the

sequence is real:

0, 1, 2, 1,−4,−11,−10, 13, 56, 73,−22,−263,−460,−131, 1118, 2629, 1904,−4079, . . .

How to find a formula for a general term of a sequence like this? Since the whole sequence is
real, we want to have a pure real formula, without any explicit usage of complex numbers.

So, let an+2 = K · an+1 +L · an and K, L, a0, a1 are real numbers, but the polynomial
λ2 − K · λ − L = 0 has non-real roots λ, λ (since K and L are real, the roots must be
complex conjugate; since they are not real, they must be different: λ %= λ). The formula
(3) for A and B is still valid, but it shows that A and B must also be complex conjugate:

A =
(

a0λ − a1

λ − λ

)
=

a0λ − a1

λ − λ
= B.

Hence, an = Aλn + Aλ
n

= Aλn + Aλn = 2 Re(Aλn) (remind that the sum of a complex
number z and its complex conjugate z is twice the real part of z).
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Let us use for λ and A the trigonometric form:

λ = r · (cos θ + i sin θ),
A = s · (cos σ + i sin σ).

The multiplication rule for complex numbers in the trigonometric form gives:

Aλn = srn(cos(σ + nθ) + i sin(σ + nθ)

whence
an = 2srn cos(σ + nθ).

This formula explains the sign changes in the sequence as above: since θ %= 0, the values
of cos(σ + nθ) switch from poisitive to negative and back (see the drawing below).

..........
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..................................
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....................

................
.............
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...........
..........
..........
..........
.

•

•

•

•

•
•

•

••
σ

σ + θ

σ + 2θ

σ + 3θ

σ + 4θ

σ + 5θ

σ + 6θ

σ + 7θσ + 8θ

cosine

cosine

is negative

is positive

7. The case of a double root. This is the most challenging case (some mathe-
maticians would have called it “the resonance case”). Again we begin with examples. Let
an+2 = 4an+1 − 4an. First, let us assume that a0 = 0, a1 = 1. Then the sequence is

0, 1, 4, 12, 32, 80, 192, 448, 1024, . . .

Second, let a0 = a1 = 1. Then the sequence is

1, 1, 0,−4,−16,−48,−128,−320,−768, . . .

How to write a formula for the terms of such sequences?
The equation λ2 − 4λ + 4 = 0 has only one “double” root: λ = 2. Certainly, the

sequence an = A · 2n satisfies the condition an+2 = 4an+1 −4an, but this formula does not
give all such sequences; in particular, neither of the two sequences given above has this
form. Thus, we need to look for other (than A · 2n) solutions. Let us consider the problem
arising in the general form.

Consider the sequences {an} satisfying the condition an+2 = K · an+1 + L · an and

suppose that the polynomial λ2 − Kλ − L has a double root λ, which means that λ =
K

2
and L = −λ2. Let us show that in this case not only an = λn, but also an = nλn satisfies
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our condition. Indeed, our condition is an+2 = K · an+1 + L · an = 2λ · an+1 − λ2an, and
an = nλn satisfies this condition:

2λ · an+1 − λ2 · an = 2λ · (n + 1)λn+1 − λ2 · nλn

= (2(n + 1) − n)λn+2 = (n + 2)λn+2 = an+2

This discovery provides sufficiently many solutions of our problem: we can take an =
(A + Bn)λn. the coefficients A and B can we found, if we know a0 and a1. Indeed,

a0 = (A + B · 0)λ0 = A and a1 = (A + B) · λ, so A = a0 and B =
a1

λ
− A =

a1 − a0λ

λ
.

In particular, for the first of the two sequences above, we have A = 0, B =
1
2
, and

an =
1
2
n · 2n = n · 2n−1 (you can check this). For the second sequence, A = 1, B =

1 − 2
2

= −1
2

and an =
(

1 − 1
2
n

)
· 2n = (2 − n) · 2n−1 (this also can be easily checked).1

8. Who is Tribonacci? No such person has ever existed. (By the way, Fibonacci
is also not a name: it is an abbreviation of a patronimic, Son of Bonacci; the real name of
Fibonacci was Leonardo, he was often referred to as Leonardo di Pisa, that is, Leonardo
from Pisa.) Still many sources mention “Tribonacci numbers,” meaning a sequence {an}
with a0 = a1 = 0, a2 = 1 and an+3 = an+2 + an+1 + an:

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, . . .

1 It is permissible to ask, how one can guess the formula an = nλn. One can say that
mathematicians have a reach intuition based on their knowledge of Analysis or Differential
Equations: there are similar problems in these areas which have similar solutions. But it
is also possible to guess this formula without a reference to any advanced Mathematics.
This is how it can be done. Suppose that our equation λ2−Kλ−L = 0 has two not equal,
but very close to each other solutions: λ and λ + ε where ε is very small. Our previous
considerations provide the formula

an = Aλn + B(λ + ε)n = Aλn + B

(
λn + nελn−1 +

n(n − 1)
2

ε2λn−2 + . . .

)

If we want that the terms λn cancel, we can put A = −B, and our expression for an will
become

an = Bnελn−1 + B
n(n − 1)

2
ε2λn−2 + . . .

This is almost what we need: put B =
λ

ε
and get

an = nλn +
n(n − 1)

2
ελn−1 + . . .

which becomes nλn when ε becomes negligibly small.
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Expectably, we will consider a more general construction: a sequence {an} with
an+3 = K · an+2 + L · an+1 + M · an+2; this sequence is uniquely determined by arbi-
trary chosen values of a0, a1, and a2.

At the first glance, the situation with this sequence is not much different from the
situation considered in previous section. We look for sequences satisfying the condition
an+3 = K · an+2 + L · an+1 + M · an+2 in the form an = λn and find that this sequence
satisfies our condition if and only if λ is a solution of the equation λ3−Kλ2−Lλ−M = 0.
In general this equation has three solutions, λ1, λ2, and λ3, and if all of them are different,
then all the sequences satisfying our condition are given by the formula

an = Aλn
1 + Bλn

2 + Cλn
3 (4)

The coefficients A, B, and C can be expressed in terms of a0, a1, a2 by means of the system
of equations 





A + B + C = a0,
Aλ1 + Bλ2 + Cλ3 = a1,
Aλ2

1 + Bλ2
2 + Cλ2

3 = a2.

9. The solution of the cubic equation: the four cases. Speaking of the three
roots λ1, λ2, λ3 of the cubic polynomial λ3 − Kλ2 − Lλ − M (with real K, L, and M), we
need to distinguish four cases: (i) all of them are real and different; (ii) one root, say, λ1

is real, and the other two are not real and complex conjugate: λ3 = λ2; (iii) all the roots
are real and λ1 %= λ2 = λ3; (iv) all the roots are real and equal to each other.

In case (i), we cannot add anything to what was said in Section 8.
In case (ii), the assumption that all an are real implies the complex conjugacy C = B.

Formula (4) takes the form

an = Aλn
1 + 2 Re(Bλn

2 ) = Aλn
1 + 2srn cos(σ + nθ)

where
λ2 = r(cos θ + i sin θ) and B = s(cosσ + i sin σ).

In case (iii), formula (4) must be replaced by the formula

an = Aλn
1 + (B + Cn)λn

2 .

In case (iv) we denote the only root of the polynomial by λ and formula (4) must be
replaces by the formula

an = (A + Bn + Cn2)λn.

The proofs of all these statements are very close to the proofs in Sections 6 and 7
(case (iv) may be regarded as new, but still it is not much different from Section 7), and
we leave them to the reader.

10. Examples. The example of the Tribonacci numbers, an+3 = an+2 + an+1 +
an, a0 = a1 = 0, a2 = 1 (see above) is not very interesting from the point of view of
our general formula. The equation λ3 − λ2 − λ − 1 = 0 has one real and two complex
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conjugate solutions; the real solution is approximately 1.839287. The other two solutions
have absolute values less than one, so, for large n, their contribution into an is negligibly
small. The coefficient A is approximately 0.182804, so the approximation

an ≈ 0.182804 · 1.839287n

is good for sufficiently large n. For example, 0.182804 · 1.83928712 ≈ 274.018 is a good
approximation for a12 = 274.

To find more appealing examples, we must consider sequences for which the cubic
equation λ3−Kλ2−Lλ−M = 0 has better looking solutions. For example, let us consider
sequences with an+3 = 2an+2 + an+1 − 2an. The cubic equation λ3 − 2λ2 − λ + 2 = 0 has
solutions λ = 2, 1, and −1. Thus, the sequence is described by the formula

an = A · 2n + B + C · (−1)n

where the coefficients A, B, C (as well as the whole sequence) are determined by a fixation
of a0, a1, and a2. For example, if a0 = a1 = 0 and a1 = 1, then the sequence is

0, 0, 1, 2, 5, 10, 21, 42, . . .

A computation shows that A =
1
3
, B = −1

2
, C =

1
6
, so

an =
1
3
· 2n − 1

2
+

1
6
· (−1)n =

2n+1 − 3 + (−1)n

6

(you can check this, if you wish). Similarly, if we put a0 = 0, a1 = a2 = 1, then the
sequence takes the form

0, 1, 1, 3, 5, 11, 21, 43, . . . ,

and an easy computation shows that A =
1
3
, C = −1

3
, B = 0. Thus, in this case

an =
2n − (−1)n

3

(again, it can be easily checked).
Next, let us consider an example involving a double root. Let an+3 = 4an+2−5an+1 +

2an. The equation λ3 − 4λ2 + 5λ − 2 = 0 has the solutions 2, 1, 1. Hence, our sequence is
described by the formula an = A ·2n +(Bn+C) with A, B, and C depending on a0, a1, a2.
For example, if a0 = a1 = 0, a2 = 1, then the sequence will be

0, 0, 1, 4, 11, 26, 57, 120, 247, . . . ,

and a computation shows that A = 1, B = C = −1. Thus, an = 2n − (n + 1).
Finally, let us consider an example for which our cubic equation has a triple root.

Namely, let an+3 = 6an+2 − 12an+1 + 8an. The equation λ3 − 6λ2 + 12λ − 8 = 0 has a
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triple root λ = 2. Hence, whichever a0, a1, a2 we choose, the sequence is described by the
formula an = (A +Bn +Cn2) · 2n with some A, B, C. For example, if we put a0 = a1 = 0,
and a2 = 1, then the sequence will be

0, 0, 1, 6, 24, 80, 240, 672, . . .

and a computation shows that A =
1
8
, B = −1

8
, C = 0, so

an =
1
8
(n2 − n) · 2n = 2n−3n(n − 1).

A reader who likes this game can take other sets {a0, a1, a2} and obtain for sequences
arising formulas like the one above. Also, the reader can consider “Tetrabonacci numbers,”
“Pentabonacci numbers,” and subsequent families of numbers, but we stop here.
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