Berkeley Math Circle: Monthly Contest 3 Solutions

1. Compute the prime factorization of $25^3 - 27^2$.

Solution. Noticing that $25 = 5^2$ and $27 = 3^3$, we have this is

$$5^{6} - 3^{6} = (5^{3} - 3^{3})(5^{3} + 3^{3})$$

= (5 - 3)(5² + 5 \cdot 3 + 3²)(5 + 3)(5² - 5 \cdot 3 + 3²)
= 2 \cdot 49 \cdot 8 \cdot 19
= 2⁴ \cdot 7² \cdot 19.

2. Suppose x and y are real numbers satisfying x + y = 5. What is the largest possible value of $x^2 + 2xy$?

Solution. The quantity in question is $(x+y)^2 - y^2 \le (x+y)^2 = 25$. Equality occurs when x = 5 and y = 0, hence the maximum possible value is 25.

3. Let ABC be an acute triangle with orthocenter H, circumcenter O, and incenter I. Prove that ray AI bisects $\angle HAO$.

Solution. Without loss of generality, AB < AC. It follows that $\angle BAH = 90^{\circ} - \angle B$, since the extension of AH is perpendicular to BC. Moreover, we also have $\angle AOC = 2\angle B$; but since OA = OC, this implies $\angle OAC = \frac{1}{2}(180^{\circ} - \angle AOC) = 90^{\circ} - \angle B$. So we conclude that $\angle BAH = \angle CAO$. Since $\angle BAI = \angle CAI$ as well, it follows that $\angle HAI = \angle OAI$, which is what we wanted to prove.

4. For which prime numbers p is $p^2 + 2$ also prime? Prove your answer.

Solution. The answer is p = 3. This indeed works, since $3^2 + 2 = 11$.

Consider any other prime number $p \neq 3$. Then it follows that $p^2 \equiv 1 \pmod{3}$; i.e. that p leaves remainder 1 when divided by 3. Consequently, $p^2 + 2$ is divisible by 3. Since $p \geq 2$, we have $p^2 + 2 \geq 7$ as well, thus $p^2 + 2$ cannot be prime in this case. \Box

5. There is a colony consisting of 100 cells. Every minute, a cell dies with probability $\frac{1}{3}$; otherwise it splits into two identical copies. What is the probability that the colony never goes extinct?

Solution. The answer is $1 - (\frac{1}{2})^{100}$.

Let p be the probability that a colony consisting of just one cell will survive. Then

$$p = \frac{1}{3} \cdot 0 + \frac{2}{3} \left(1 - (1-p)^2 \right)$$

owing to the fact that when the cell splits in two, the probability both of them go extinct is $(1-p)^2$. Solving for p, we obtain $p = \frac{1}{2}$.

The colony initially has 100 cells; if we treat these as 100 distinct colonies, we obtain the claimed answer. $\hfill \Box$

6. Let H, I, O, Ω denote the orthocenter, incenter, circumcenter and circumcircle of a scalene acute triangle ABC. Prove that if $\angle BAC = 60^{\circ}$ then the circumcenter of $\triangle IHO$ lies on Ω .

Solution. First, we show that the five points B, O, H, I, C all lie on a circle. To see this, note that

$$\angle BIC = 90^{\circ} + \frac{1}{2} \angle BAC = 120^{\circ}$$
$$\angle BOC = 2 \angle BAC = 120^{\circ}$$
$$\angle BHC = 180^{\circ} - \angle BAC = 120^{\circ}.$$

So, this proves the claim.

Let M be the midpoint of arc BC of Ω now (not containing A). Evidently, MB = MC and $\angle BMC = 120^{\circ}$. Since OB = OC and $\angle BOC = 120^{\circ}$ as well, we discover that triangles BMO and CMO are actually equilateral triangles, whence MB = MO = MC; i.e. M is the circumcenter of $\triangle BOC$. Since B, O, H, I, C are all concyclic, M is the circumcenter of $\triangle IHO$ as well, as desired.

7. Let a, b, c be positive integers. Prove that it is not possible for $a^2 + b + c$, $b^2 + c + a$, $c^2 + a + b$ to all be perfect squares.

Solution. Without loss of generality we may assume $\max\{a, b, c\} = a$. Then $a^2 < a^2 + b + c \le a^2 + 2a < (a+1)^2$.

So, $a^2 + b + c$ is not a perfect square, because it lies strictly between two perfect squares.

8. Let n be a fixed positive integer. Initially, n 1's are written on a blackboard. Every minute, David picks two numbers x and y written on the blackboard, erases them, and writes the number $(x + y)^4$ on the blackboard. Show that after n - 1 minutes, the number written on the blackboard is at least $2^{\frac{4n^2-4}{3}}$.

Solution. We proceed by strong induction n, with the base case n = 1 being vacuous. For the inductive step, consider the situation in which we have two numbers x and y remaining on the blackboard. Suppose the first one was written after a-1 operations, and the second one was written after b-1 operations, so that (a-1)+(b-1)=n-2. Then by the inductive hypothesis,

$$x \ge 2^{\frac{4a^2-4}{3}}, \qquad y \ge 2^{\frac{4b^2-4}{3}}.$$

Consequently, using convexity and the bound $(a + b)^2 \leq 2(a^2 + b^2)$, we have

$$x+y \ge 2 \cdot 2^{\frac{2(a^2+b^2)-4}{3}} \ge 2^{\frac{(a+b)^2-1}{3}} = 2^{\frac{n^2-1}{3}}$$

So $(x+y)^4 \ge 2^{\frac{4n^2-4}{3}}$ as needed.