Frieze patterns

1. In the following table of numbers find a pattern that connects adjacent numbers and allows to extend the table indefinitely to the right and to the left.

	0		0		0		0		0		0		0		0		0		0		0		0	
1		1		1		1		1		1		1		1		1		1		1		1		1
	1		2		2		3		1		2		4		1		2		2		3		1	
3		1		3		5		2		1		7		3		1		3		5		2		1
	2		1		7		3		1		3		5		2		1		7		3		1	
3		1		2		4		1		2		2		3		1		2		4		1		2
	1		1		1		1		1		1		1		1		1		1		1		1	
0		0		0		0		0		0		0		0		0		0		0		0		0
Hint: Look at the rhombi																								
	b																							

a

 \mathbf{c}

d

Write the rule that you have just found in the box below:

Definition. A *frieze* is a grid of numbers bounded from above by an infinite row of 0's, followed by a row of 1's and satisfying the *frieze rule* (1). A frieze is called *closed* if it is also bounded from below by a line of 1's (followed by a line of 0's). The number of nontrivial lines in a closed frieze is called the *width* of the frieze. A frieze is called *integral* if it consists of integers.

2. Prove that in the frieze

with $f_0 = 1$ and $f_1 = a_1$ the following relation holds

$$f_i = a_i f_{i-1} - f_{i-2}.$$
 (2)

Hint. Check the statement for i = 2 and then use the row of g_i 's and induction on i.

3. Use relations (1) and (2) to show that if all the numbers a_i are positive integers than the frieze is integral and all it's entries are positive.

4. Prove that every line of a closed frieze of width $n - 3 \ge 1$ is *n*-periodic.

Hint. Plug i = n - 1 into relation (2) and then consider a diagonal starting with f_{n-3} and going North-East.

5. Prove that a closed integral frieze with the first nontrivial line (a_i) has $a_j = 1$ for some j.

Hint. Assume that there is no such *j*. Show that $f_i > f_{i-1}$ by induction on *i*.

6. Consider a closed integral frieze F of width w and choose j such that $a_j = 1$. By problem 4, the frieze F is periodic with period n = w + 3. Let F' be the n - 1-periodic frieze with the first nontrivial line

$$(\dots, a_{j-1}, a_j, a_{j+1}, a_{j+2}, \dots) \longrightarrow (\dots, a_{j-2}, a_{j-1} - 1, a_{j+1} - 1, a_{j+2}, \dots)$$

Prove that the frieze F' is a closed integral frieze of width w - 1. Note that you can construct the frieze F from the frieze F' by reverting the process.

Hint. Consider the diagonal f'_i for the frieze F' and show that $f'_i = f_i$ if $i \leq j-2$ and $f'_i = f_{i+1}$ if $i \geq j-1$.

7. Consider a triangulated *n*-gon. For every vertex v_i of the *n*-gon, let a_i be its number of adjacent triangles; this yields an *n*-periodic sequence (a_i) . Taking this sequence as the first nontrivial line, we define the frieze corresponding to the triangulation. Draw the *n*-gon and its triangulation corresponding to the frieze in problem 1.

8. Prove the following theorem by Conway and Coxeter.

Theorem.

- (i) The frieze corresponding to a triangulation of an n-gon is a closed integral frieze of width n-3.
- (ii) Every closed integral frieze of width n-3 corresponds to some triangulation of an n-gon.

Hint. Consider n = 3 and then prove the theorem using induction on n.

The presentation of material in this worksheet completely follows

Claire-Soizic Henry, *Coxeter Friezes and Triangulations of Polygons*, Amer. Math. Monthly **120**, 2013, 553-558.