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SNEAK PrREVIEW. The reader will encounter games and puzzles with exotic names
like Gopher Gun, Escape of the Clones, and Pointless Machine, which are con-
nected by the fundamental problem solving technique of invariants. When or-
ganized and led suitably, the material here can provide a highly interactive en-
vironment where group work, individual investigation, and class discussions flow
seamlessly from one to the other; and indeed the live BMC Stomp session involved
with equal enthusiasm everyone from the youngest middle schoolers to the high
school seniors. Although the concept is not new, the game of Stomp was created
specifically for the BMC session, along with all the related problems. Stomp has
appeared on a few other occasions — most notably at the EPGY Summer Pro-
grams '05-06 [27] and the Julia Robinson Math Festival 07 |77], while Gopher
Gun originated at Mathcamp '05 [14].



5. Escape of the Clones

This is a version of a famous puzzle attributed originally to Maksim
Kontsevich, which appeared in the Tournament of the Towns and in the
Russian journal Kvant in 1981 (cf. |54, 50]). Its solution will require the
creation of invariants with infinite series.

5.1. The set-up of the game. Consider the first quadrant in the Carte-
sian plane divided into unit squares by horizontal and vertical lines at the
positive integers. Place 3 dots (clones) in the shape of an L-tromino in the
bottom left-most squares, and draw a “barbed wire fence” enclosing the dots
and their 3 respective squares: this is the orange fence in Figure 8.
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FIGURE 8. Escape of the Clones



5.2. The rules of the game. At each step you can erase a dot and
replace it with two copies in adjacent squares, one directly above and the
other directly to the right, as long as those squares are currently unoccupied.
In other words. when a clone disappears, it sprouts two more clones above
and to the right of it. Notice that this is a Stomp-like game

e whose board is the infinite first quadrant and

e whose “footprint” is an L-tromino allowed to be placed only in the
standard orientation of the English letter L, and only when the
corner square of L covers a clone while the other two squares of L
land on clone-empty spots.

5.3. Freedom for the clones!

Problem 14 (Advanced). Prove that it is impossible to free all clones
from the prison.

Although the problem setting is elementary enough for anyone to play
and enjoy the game, the actual solution is hard to come up with and re-
quires knowledge of a useful summation formula. That’s great: while playing
games, we will learn some algebra too!



5.4. In search of the invariant. What could be the invariant preventing
us from freeing all 3 prisoners? You should try parity, the coloring tech-
nique, and any other previous ideas, but soon enough vou will realize that
the problem is too complicated to succumb to these methods. We need a
different, more powerful approach here:

@ PST T8. Assign a suitable number to each square to create an invariant.

What could these suitable numbers be? Let us agree to label a square
with the coordinates (a,b) of its bottom left corner. Thus, the 3 initially
occupied squares are labeled by (0.0}, (1.0), and (0.1). If we assign. for
instance, the number 1 to square (0, 0}, it makes sense to assign 1/2 to each
of squares (1,0) and (0, 1) so that the sum of assigned nmunbers to occupied
squares before a move and after a move remains constant: 1 = 1/2 4+ 1/2.
OK, but then we are more or less forced to assign 1/4 to each of squares
(2,0), (1,1), and (0,2) so that this same reasoning works when a clone in
(1.0) or (0,1) sprouts two more clones: 1/2=1/4+ 1/4.

Thus, every time we move to the right or up, the assigned numbers get
halved! Going around the board in this manner, we soon discover an exact
formula for all the desired numbers:

Exercise 16. To every square (z, y) assign the number ﬁ Show that when
N a move is applied to a clone anywhere, the sums of the munbers assigned to
occupied squares before and after the move are equal.

We have found our invariant: the sum of the munbers in occupied squares
stays constant throughout the game! How can we capitalize on this invariant?



5.5. Arguing by contradiction. Suppose that we can free all 3 clones
from the prison. Along the way. they will have sprouted several clones outside
the prison. Call the sum of the numbers in occupied squares at the end of the
game Syyut. Note that our initial invariant sum for the clones in the prison
is simply Si, = 1 + % —|—% = 2: so we must have Syt = 2. But could this
happen? Well, whatever happens. Squt cannot be more than the sum of all
numbers assigned to out-of-prison squares.
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FiGURrE 9. Assignment of numbers and Problem 16

5.6. Algebra detour. For starters, let’s add up all numbers on the infinite
board in an orderly fashion. For example, on row 1 we will have

, 11 1

3 l+=—+-+=-+.--=2.

(3) + 5 + 1 + 3 +

If the reader wonders how we came up so fast with the answer for this sumn,
note that a much more general formula holds:



% Problem 15. For any (real) numbers a and r, —1 < r < 1, show that
a
‘*3 atar+ar’+ar®+. +ar+ ..

T 171
The sum is called a geometric series with initial term a and ratio r. We

leave the proof of this formula for the Hints section, but we do encourage
the reader to try to prove it from scratch: it won't be a trivial exercise.®

In the case of row 1 (¢f. Fig. 9a), the initial term is ¢ = 1, and the ratio
is r = % Now, to see what goes on in row 2, note that each number there
is half of the number directly below it, i.e., the sum in row 2 will be half of
the sum in row 1. Similarly, the sum in row 3 will be half of the sum in row

2, and so on. In general, in the i th row:

. + = + . l 1 -I— -I— -I- + - - 2= .
2i—1 ' 9i = 9i+l 21 2 4 8 — 9i=1 21-2
Adding up the sums in all rows yields the sum of all mumbers on the board:

11 1
24 14=4+=-F=4+--=24+2=4.
+ 1+ 5 + 1 + 3 + +

All right, we subtract the “in-prison” numbers, 1 + % — é— = 2. to obtain the
maximal value that S, can ever be: Sgut <4 —2 = 2.

% This formula appears in just about any course in calculus when discussing sequences
and series. We shall dedicate a session to related topics in a future volume.



5.7. The finishing touch: this is a finite game! Recall that. even
though we are playing on an infinite board, the prisoners are supposed to be
freed in finitely many moves. Thus, at least one outside-of-prison square is
clone-free hence the out-of-prison sum is strictly less than 2: Syt < 2. This ?
contradicts the fact that Sy = Sin = 2 and proves that the three clones
cannot all be freed from prison. ]

5.8. Pushing on: generalizations. What is the real story behind this
problem? Why did the method of using a summation invariant work so
nicely? If we slightly change the initial set-up. would it still be impossible
to free the clones?
Problem 16. A single clone is placed in square (0, 0). and the prison encloses
% (a) the 10 squares (4, j) with ¢ + j < 3 (Kontsevich [54]; ¢f. Fig. 9b);
R (b) the 6 squares (i, 7) with i + j < 2 (Khodulev [50]; cf. Fig. 9¢).

Show that there will always be at least one clone in the prison.

HINT: Part (a) is like Problem 14, but part (b) requires another insight. ¢



Further Reading:

A delightful discussion and generalization of the above problems is pre-
sented by Chung. Graham. Morrison. and Odlyzko in a 1995 piece in the
Monthly (cf. [15]). Starting with one initial clone in (0, 0), the articles de-
scribes all “inescapable prison shapes.” and relates the problem to a new
“Ramanujan-like” continued fraction.”

15. F. Chung, R. Graham, J. Morrigson, and A. Odlyzko, Pebbling a Chessboard, Amer.
Math. Monthly 102 (1993), no. 2, 113-123.

http://www.math.ucsd.edu/~fan/mypaps/fanpap/150chess.pdf

50. A. Khodulev, Pebble Spreading, Kvant (1982), 28-31, 33.
54. M. Kontsevich, Problem M715, Kvant (1981), 21.

" The beginning of [15] can be readily followed by anyone. However, as the reader
advances into the article, more maturity and experience will be required. For example,
familiarity with the notions of recursive sequences, summation techniques, partial deriva-
tives, continued fractions, and asymptotic manipulations will be needed. The advanced
reader may consider learning the necessary background for the article as a long-term
project.


http://www.math.ucsd.edu/~fan/mypaps/fanpap/150chess.pdf

For the Die-Hards:

The Game (Conway Checkers): On an infinite square grid, a horizontal line of the grid
Is drawn. You initially place checkers below the line: as many as you wish, but no more
than 1 checker per square. Then you may take a checker and jump it over a checker that is
adjacent to it (in any of the four directions) into the square immediately beyond, if that
square is vacant. In the process you remove the square that has been jumped over. You
may continue jumping checkers as long as there are two checkers adjacent to each other
somewhere. The goal is the get a checker as far above the drawn horizontal line as
possible. What is the highest row that can be reached and why?

Note: The solution involves some creativity in constructing examples to reach the first
several rows, and a lot of creativity in using infinite series and the golden ratio in showing
that one cannot reach any further row.



6. Hints and Solutions to Selected Problems

Problem 15. Assume for the moment that the desired sum exists. i.e..
(5) at+ar+ar*+---+am+... =85
for some number S. Multiplying by the common ratio r gives

(6) ar+ar’ +ar® +. . +ar"™ £ =18

Now subtracting the two equations (5) and (6) yields

%

a=(1-r)5 = S=

a

- T

Thus when a = 1 and » = 1/2. we obtain the special case of the row sum in

the Clones problem: S =1+ % + % + % + = 1_—1“2, = 2.

.IIII " " "
%& To prove that the sum S actually exists is a completely different ball-
‘-é game, which we leave to the reader to ponder over. You will encounter a
complete proof of this in a calculus course. where limits are introduced. ¢



Problem 16. Use the same assignment of 2777 to squares (7. j). and com-
pare sums S, = 1 and Sy,,¢, which are supposed to be equal. In part (a), a
contradiction is achieved via the inequalities j}

Sout <4—1-2.4-3. L 4.1l=3<1

The same adding technique produces in part (b)

Sout <4—-1-2.4-3.4=251
which does not provide a contradiction. A more refined argument for Sy
is needed. Note that in the first row and first column of the board there
will always be exactly one clone (why?); hence this row and column will
contribute to S, at most 1/8 each. Add up the rest of the board. and find j}

a smaller upper bound for S,,;:
Sout <4—(2-3)-(2-2)+1-12=1 O



