Laser-cutting: for which of these pictures is it possible to trace the entire shape with a single, non-back-tracking line?

Vocabulary

Graph

Degree of a Vertex

Eulerian Path

Eulerian Cycle

Hamiltonian Path

Hamiltonian Cycle

Planar Graph

Dual Graph

Euler's Formula

The Eulerian and the Hamiltonian

Graphs I 2014

Zandra Vinegar ch3cooh@alum.mit.edu

Find the full presentation at:

https://sites.google.co m/site/applelessgarden /mathcircle

Extra Challenges

1. Construct a graph with each of the following properties or if such a graph cannot be constructed, explain why:

	Hamiltonian Path	Hamiltonian Cycle	Eulerian Path	Eulerian Cycle
Α	X	X	X	X
В	X	X	X	no
С	X	no	X	X
D	X	no	X	no
Ε	X	X	no	no
F	no	no	X	X
G	X	no	X	no
н	X	no	no	no
$ \mathbf{I} $	no	no	X	no
J	no	no	no	no

2. Construct a graph on 8 vertices with *as many edges as possible,* but such that the graph does <u>not</u> have a Hamiltonian path.

3. Is it possible to tour the city of Konigsberg crossing over each of Konigsberg's 7 bridges exactly once? If so, how; if not, why not?

Finding Eulerian Paths

Laser-cutting: for which of these pictures is it possible to trace the entire shape with a single, non-back-tracking line?

Path / Cycle / Neither

Path / Cycle / Neither

Finding Eulerian Paths

Laser-cutting: for which of these pictures is it possible to trace the entire shape with a single, non-back-tracking line?

Path / Cycle / Neither

Path / Cycle / Neither

Path / Cycle / Neither

Finding Eulerian Paths

Laser-cutting: for which of these pictures is it possible to trace the entire shape with a single, non-back-tracking line?

Path / Cycle / Neither

Path / Cycle / Neither

Path / Cycle / Neither

Additional Copies:

Path / Cycle / Neither

