4. History again. Impossible Geometry Problems: Answer Key

RECAP 1: New Vocabulary & Ideas (48 pts)

Check the correct answer. Explain your choice in words and provide details.

- 1. Euclid's *Elements* are: (4 pts each)
 - I. A list of chemical elements found in antiquity.
 - II.) A book full of geometric axioms and propositions.
 - III. A series of 13 books.
 - IV. A valuable book with antique recipes, translated into numerous languages.
- 2. *Euclidean constructions* are performed with:
 - I. A ruler and compasses.
 - II. A protractor and a straightedge.
 - III. Compasses and a straightedge.
 - IV. A pencil, ruler, and a needle.
- 3. A *straightedge* is used to:
 - I. Punish children who misbehave.
 - II. Draw a rhombus.
 - III. Measure distances.
 - IV. Find flaws in someone's drawings.
- 4. With a pair of *compasses* one can:
 - I. Draw ellipses.
 - II. Find his way back to Berkeley.
 - III. Construct a regular 7-gon.
 - IV) Aid others in finding the exact midpoint of a segment.
- 5. A *ruler* was not used by the Greek geometers because:

- I. It is believed that they did not know how to operate with numbers written in the 10-base system.
- II. It is rumored that they were not smart enough to use the power of the ruler.
- III. It is known that they did not have computers to help them do arithmetic problems.
- IV. It is suspected that they liked working only on hard and interesting geometry problems.
- 6. To find the exact *midpoint* of a segment one needs to:
 - I. Improve his detective abilities.
 - II. Find out how Gauss did it.
 - (III) Use the properties of a special quadrilateral.
 - IV. Know that the diagonals of a rhombus are not necessarily equal in length.
- 7. The exact *centroid* of a triangle can be located by:
 - I. Redrawing the triangle on a graph paper and using the properties of the graph paper.
 - II. Intersecting the medians of the triangle.
 - III. Finding the approximate place of the center of mass of the triangle using an inflexible model of the triangle and hanging it on a string.
 - IV. Using a GPS device.

- 8. The address of the Mathematical Sciences Research Institute in Berkeley is "17 Gauss Way" because:
 - I. The Greeks failed to draw a regular 17-gon.
 - II. The street names in Berkeley are funny.
 - III. Gauss was 17 years old when he discovered important geometric facts.
 - IV) A regular 17-gon is the first in a sequence of polygons drawn by Gauss, using a straightedge and compasses.
- 9. It is *possible* to:
 - I. Draw a rhombus with a ruler and compasses.
 - II. Double the volume of the cube with a straightedge and compasses.
 - III. Draw a regular heptagon with a straightedge and compasses.
 - IV. Divide any angle into three equal subangles with a straightedge and compasses.
- 10. In Berkeley, there is a *street named*:
 - I.) Euclid.
 - II. Archimedes.
 - III. Euler.
 - IV. Desire.
- 11. We study *Euclidean constructions* for a number of reasons EXCEPT:
 - I. It is a beautiful topic that provides insights to many geometric problems.
 - II. It is interesting from a historical perspective to learn about humankind.
 - III.) We like to make our lives really hard.
 - IV. It teaches us algorithms for constructing many shapes.
- 12. *Euclid*:

- I. Was a famous scholar and scientist in the ancient times.
- II. Wrote one of the most famous books of all times.
- III. Used only a straightedge and compasses in the 465 propositions in his *Elements*.
- IV.) All of the above.

RECAP 2: New Theory (15 pts; 3 pts one answer OK + 2 bon. each extra answer)

What new facts did you learn about:

- Rhombi? (3 pts)
 - A rhombus is a quadrilateral with four equal sides.
 - The diagonals in a rhombus are perpendicular and bisect each other.
 - The diagonals in a rhombus are not necessarily equal.
- Equilateral triangles? (**3 pts**)
 - \succ A triangle with three equal sides.
 - ➤ A triangle with three equal angles.
- Regular polygons? (**3 pts**)
 - A regular polygon is a polygon with equal sides and with equal angles.
 - Not all regular polygons can be drawn with compasses and a straightedge.
 - The Greeks constructed a number of regular polygons.
 - Gauss determined which regular polygons can and which cannot be constructed with compasses and a straightedge.
 - Gauss constructed regular 17-gon, 34-gon, 51-gon, and others.

- Impossible geometry problems? (3 pts)
 - There are construction problems which cannot be solved with a straightedge compasses.
 - One such impossible problem is *Circle Squaring*: to draw a square with the same area as a given circle.
 - Another such impossible problem is *Cube Duplication:* to draw a cube with volume twice as big as a given cube.
 - A third such impossible problem is Angle Trisection: to divide any angle into three equal angles.
- Drawing tools allowed in Euclidean constructions? (**3 pts**)
 - In Euclidean constructions we can use only a straightedge (without any markings) and compasses.
 - There are good reasons for the Greeks to restrict geometric constructions only to using a straightedge and compasses.

RECAP 3: Algorithms (15 pts)

What is an algorithm? (**3 pts**) Describe the algorithms you learnt so far, using only a straightedge and compasses, to construct:

- An equilateral triangle. (3 pts)
- A rhombus. (**3 pts**)
- The midpoint of any segment. (3 pts)
- The centroid of any triangle. (3 pts)
- An *algorithm* is a sequence of steps that lead to a solution of a problem.
- To draw an *equilateral triangle*:

- 1. Draw a segment *AB*.
- 2. With centers *A* and *B* draw two circles of radii equal to *AB*.
- 3. Where the two circle intersect, mark the points as *C* and *D*.
- 4. The triangles *ABC* and *ABD* are both equilateral.
- To draw a *rhombus*,
 - 1. Follow the same algorithm above for constructing an equilateral triangle.
 - 2. The quadrilateral *ADBC* is a rhombus.
 - 3. The two radii in the algorithm do NOT need to be equal to *AB*, but they need to be equal to each other in order to produce a *rhombus*.
- To draw the *midpoint* of a segment *AB*,
 - 1. Follow the procedure above to construct a rhombus *ADBC* one whose diagonals is *AB*.
 - 2. Draw the other diagonal *CD* of the rhombus.
 - 3. The point *M* where the two diagonals meet will be the *midpoint* of *AB*.
- To draw the *centroid* of a triangle *ABC*,
 - 1. Follow the algorithm above to draw the midpoints of the three sides *AB*, *BC*, and *CA*.
 - 2. Connect each vertex with the midpoint of the opposite side, in order to draw the three medians.
 - 3. The point *G* where the three medians intersect will be the *centroid* of the triangle.
 - 4. It is sufficient to draw and intersect only two of the medians.

RECAP 4: Mathematical Logic (10 pts + 2 bonus)

- What is the difference between a *theorem* and an *algorithm*? Which needs to be proven?
 - A theorem is a general true statement, while an algorithm is a sequence of steps to construct something or reach some result. An algorithm could be part of the proof of a theorem. (3 pts)
 - Both a theorem and algorithm need to be proven: that the theorem is true and that the algorithm works and does what it is supposed to do. (1 pts)
- Did we *prove* any of the new theory facts, new historical facts, or new algorithms?
 - We did *not* prove them. (1 pts)
- How are we so sure they are true?
 - We experimented and checked in specific cases. We relied on facts we had observed before. (2 pts)
- What evidence do we have that they are true? (3 pts for one answer + 2 bonus).
 - The construction algorithms for an equilateral triangle, a rhombus, a midpoint of a segment, and the centroid all worked out in the specific cases we drew.
 - The diagonals in a rhombus did indeed look perpendicular and bisected each other in the cases we drew.