Problem set

March 10, 2015

- 1. Show that $x^2 + 3y^2 = p$ is solvable if $\left(\frac{-3}{p}\right) = 1$.
- 2. p and q are odd primes, and $q|2^p-1$. Show that $q\equiv \pm 1 \pmod 8$.
- 3. Let p>2 be a prime, and (a,p)=1. Define $N(a,p):=|\{(x,y)\mod p: x^2-y^2\equiv a(\mod p)\}|,$ find N(a,p).
- 4. Let p>2 be a prime, and $l\geq 3$ be an integer. Show that $x^{2^l}\equiv 2^{2^{l-1}}(\mod p)$

is solvable.

5. Explain (or give another proof) quadratic reciprocity in terms of Galois theory.