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Consider a classic two-person game like Tic-Tac-Toe. Instead of alternating moves, though,
you and your friend bid for the right to make the next move. For example, suppose you each
start with 5 chips. You bid 2 chips and your friend bids 1, so you pay them 2 and make a
move. Now you have 3 chips, your friend has 7 chips, and you repeat the process.

This simple alteration to Tic-Tac-Toe is enough to turn it into a much deeper game (try
it!) And many games — chess, hex, go — can be similarly modified. Today, we will explore
some of the theory behind such bidding games.

1. Introducton

The theory behind bidding games was first explored by David Richman in the late 1980’s.
More formally, a game is a finite directed graph G with two special vertices labeled a and
b, and a token that begins at an initial vertex v of the graph. Two players, Alice and Bob,
each start with some nonnegative amount of money. At each step, they both secretly write
down some number less than or equal to the total amount of money they have. Then the
bids are revealed. The person who bids more pays the other player an amount equal to his
or her bid, and moves the token along an adjacent edge to a neighboring vertex. The game
ends when the token reaches either a (a win for Alice) or b (a win for Bob). If the bids
are ever equal, the tie is broken by a coin toss. The game is ruled a tie if the token never
reaches either distinguished vertex. And the players care only about winning the game —
the money loses all value once the game is over.

A winning strategy is a system of bids and moves that guarantees a win, given the game
and the initial state, which includes the board state and the initial amounts of money each
player starts with.

Obviously, Alice and Bob cannot both have a winning strategy. What about if neither
has a wining strategy? The following theorem asserts that this rarely happens:

Theorem 1.1. For each vertex v of G, there is some number R(v) such that if the token is
at v, Alice has a winning strategy if her share of the money is greater than R(v), and Bob
has a winning strategy if Alice’s share of the money is less than R(v).

If alice possess exactly R(v), then the outcome may be determined by the tie-breaking
coin flips. The surprising part about Theorem 1.1 is that it holds even if G has directed
cycles. In such a case, we might expect there to be a range of money Alice can have that
will all lead to a tie, but this does not happen.

This also implies that both players have optimal pure strategies, and knowing the other
player’s strategy does not give a player any advantage when both players play optimally.
(Contrast this with games like Rock-Paper-Scissors, where both players move simultane-
ously).
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2. Richman cost functions

Proof. : For each vertex v ∈ V (G), let S(V ) denote the successors of v in G. Given a
function f : V → [0, 1], let

f+(v) = max
w∈S(V )

f(w), f−(v) = min
w∈S(V )

f(w).

A function R : V → [0, 1] is a Richman cost function if f(a) = 0, f(b) = 1, and for all other
v ∈ V , R(v) = 1

2
(R+(v) + V −(v)).

We will show such a function exists by construction. Define the function R(v, t) as follows.
Let R(b, t) = 0 and R(a, t) = 1 for all t ∈ Z≥0. For v /∈ {a, b}, define R(v, 0) = 1 and

R(v, t) =
1

2
(R+(v, t− 1) +R−(v, t− 1))

for t > 0. Then R(v, t) is convergent, and v 7→ limt→∞R(v, t) is a Richman cost function. �

Theorem 2.1. If Bob’s share of the total money exceeds R(v) = limt→∞R(v, t), then Bob
has a winning strategy. More specifically, if his share of the money exceeds R(v, t), his victory
requires at most t moves.

As you might expect from the terminology R(G) and R(v), one can also show:

Theorem 2.2. The Richman cost function of G is unique.

3. Random turn games

Suppose now that instead of bidding, the right to take the next move is determined by a
fair coin toss. Such a game plays very differently from a bidding game. For example, if you
are significantly worse than your opponent, a single wrong play in a bidding game will likely
lead to a loss. In the corresponding random game, however, you might well still get lucky
and pull out a win.

Amazingly, the analysis of a random game is intimately related to the analysis for the
corresponding bidding game. Given a finite combinatorial game, recall R(v) is the (unique)
Richman cost function on G at vertex v. Let P (v) be the probability that Alice wins in the
corresponding random turn game, beginning at vertex v and assuming optimal play. Then:

Theorem 3.1 (Richman’s Theorem).

R(v) = 1− P (v).

4. Random Hex

This section is adopted from the 2006 paper ”Random-Turn Hex and Other Selection
Games,” by Y. Peres, O. Schramm, S. Sheffield, and D. Wilson.

4.1. Introduction. Hex is a board game, invented in the 1940’s by John Nash (among
others). Two players alternate turns placing different colored stones on a rhombus-shaped
grid, which is tiled by hexagons. The two pairs of opposite sides of the board are colored
white and black. Alice wins if she forms a chain linking the whites ides of the board; similarly,
Bob wins if he forms a chain linking the black sides of the board.
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Figure 1. A sample game of Hex

Though its rules are simple to state, the game of hex is surprisingly difficult to analyze.
Hex is solved for all boards of size 9 × 9 and below, but the case of the standard 11 × 11
board remains open.

The random version, however, falls into a class of games known as selection games that
are much more amenable to analysis.

4.2. Selection games. Let S be an n-element set known as the board, and f a function
from the power set of S to R. A selection game is played as follows: The first player selects
an element of S, the second player selects one of the remaining n−1 elements, the first player
selects one of the remaining n− 2 elements, and so on and so forth until S is exhausted. Let
SA, SB denote the sets chosen by Alice and Bob when they play the selection game, Then
Alice receives a payoff of f(SA) and Bob receives a payoff of −f(SA).

4.3. Strategy. The state of a selection game can be captured by an ordered pair (T1, T2)
of disjoint subsets of S, corresponding to the current sets of elements selected by A and B.
A pure strategy for a player in a random-turn selection game is a map M from such pairs
(T1, T2) to elements of S.

Let E(T1, T2) be the expected payoff for Alice at this stage of the game. E can be
computed inductively as follows. If T1 ∪ T2 = S then E(T1, T2) = f(T1). Now suppose we
know E(T1, T2) for all T1 with |S\(T1 ∪ T2)| ≤ k. On her turn, Alice’s optimal play is to
choose an s from S\(Ti ∪ T2) for which E(T1 ∪ {s}, T2) is maximal. Similarly, Bob attempts
to minimize E(T1, T2 ∪ {s}) whenever he gets to move.

Theorem 4.1. The expected value of a random-turn selection game is the expectation of
f(T ) when a set T is selected randomly and uniformly among all subsets of S. Moreover,
any optimal strategy for one of the players is also an optimal strategy for the other player.
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Proposition 4.1. If f is generic, there is a unique optimal strategy and it is the same for
both players. Moreover, when both players play optimally, the final S1 is equally likely to be
any one of the 2n subsets of S.

4.4. Win Or Lose. A game is win-or-lose if f(T ) takes on precisely two values (which we
can assume are −1 and 1). If S1 ⊂ S and s ∈ S, then we say s is critical for S1 if

f(S1 ∪ {s}) 6= f(S1\{s}).
A selection game is monotone if f(S1) ≥ f(S2) for all S1 ⊃ S2.

Lemma 4.1. In a monotone, win-or-lose, random-turn selection game, a first move s is
optimal if and only if s is an element of S that is most likely to be critical for a random-
uniform subset T of S. When the position is (S1, S2), the move s in S\(S1,∪S2) is optimal
if and only if s is an element of S\(S1∪S2) that is most likely to be critical for S1∪T , where
T is a random-uniform subset of S\(S1, S2).

5. Bidding Hex

This section is adapted from the 2008 preprint “Artificial Intelligence for Bidding Hex”,
by Sam Payne and Elina Robeva.

The relationship between bidding and random turn games given by Richman’s Theorem
gives a strategy for how to win at (continuous) bidding games. Here, we give an algorithm
used to devastating effectiveness for bidding hex.

Start with a partially filled board. Section 4 shows that it is optimal for both players to
play at a hex which is most likely to be critical.

For an empty hex H, let LH be the probability that H is filled with the losing color when
the remainder of the board is filled in at random.

Proposition 5.1. The probability that H is not critical is 2LH .

The optimal moves are those those that minimize LH .

Proposition 5.2. Let H be an open hex such that LH is minimal from position v. Then an
optimal bid for real-valued bidding is the proportion

δ(v) =
1

2
− LH

of total bidding resources.

This gives rise to the following AI algorithm:

(1) From a given game state, fill in the rest of the board at random a large number of
times, recording the outcome each time.

(2) Let H be the hex that is least often a losing color. Bid the integer part of 1
2
− LH

times to the total number of chips in the game.
(3) If this wins, move in H.
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