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1 Polygon addition

Problem 1.1 (Robot translation) Given a set of obstacles in the plane and a robot that can move
among them by translation, describe the space of allowed positions, or configurations, as a set of points.

Idea (Configuration space): Shrink the robot to a point, grow the obstacles accordingly. Inflated obstacles
constitute occupied space. The rest is free configuration space: each point is an allowed robot position.

Figure 1: (a) Disk-robot and rectangular obstacle. (b) Robot with two rotational degrees of freedom.
.

In Figure 1(a), the disk-robot is represented by its center. We slide it around the obstacle and mark the
trajectory of its center. Equivalently, we add the disk to the obstacle by Minkowski addition, see below.

Problem 1.2 (Robot rotation) Consider the robot arm in Figure 1(b), comprised of 2 straight-line
segments. What is the set of allowed configurations of its end-effector in the space of angles θ1, θ2?

Let us restrict attention to polygonal obstacles, or polygons, which are convex, hence we exclude the
obstacle of Figure 1(a). Polygons in the plane are sequences of straight-line segments, called edges, where
every two consecutive edges share a point, called vertex. Our polygons lie in the real plane, denoted by
R2. Any point in the plane defines a vector rooted at the origin. For vectors or points a, b in the plane,
let 〈a, b〉 ∈ R denote the inner product of the corresponding vectors. For a polygon P and vector v, let
h(P, v) = sup{〈p, v〉 : p ∈ P} ∈ R be the extreme inner product with v over P ; the maximum is actually
attained in P . The set {p ∈ P : 〈p, v〉 = h(P, v)} is either a vertex or an edge of P . Vector v is an outer
normal of this vertex or edge. Conversely, if we are given vectors v1, . . . , vn ∈ R2 that positively span the
plane, and values h1, . . . , hn ∈ R, a polygon is obtained as the intersection of the corresponding half-planes:
P = {p ∈ R2 : 〈p, vi〉 ≤ hi, i = 1, . . . , n}.
For polygons in R2 there is a natural associative and commutative operation which generalizes vector
addition and is called Minkowski addition.
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Definition 1.3 For any two polygons P,Q ⊂ R2, their Minkowski sum is

P +Q = {p+ q | p ∈ P, q ∈ Q}.

We call P and Q the summands of P +Q.

Problem 1.4 (Kinematic definition) Prove that P +Q is the set covered by translating Q by all points
p ∈ P : P +Q =

⋃
p∈P (p+Q).

Several examples are shown in Figure 2. The definition extends to arbitrary sets in R2 and, in fact, to any
dimension: the middle Figure 1(a) shows the sum of a disk with a non-convex polygon.

Problem 1.5 If P,Q are convex, then P +Q is convex.

Problem 1.6 The face of P +Q with outer normal v ∈ R2 is the sum of those faces of P and Q that have
outer normal v.

It now follows that

Corollary 1.7 The vertices of P+Q are sums of vertices from P and Q. Every edge of P+Q is determined
uniquely as the Minkowski sum of an edge and a vertex from P and from Q, respectively, or the sum of
two strongly parallel edges (same outer normal) from P and Q.

Problem 1.8 Describe zonotopes, which are Minkowski sums of k non-parallel edges, hence parallelograms
are zonotopes for k = 2. Can you always partition the zonotope into parallelograms? How many?

Problem 1.9 What are the faces of the Minkowski sum of two 3-dimensional polytopes?

Given a finite set of points, their convex hull is the smallest (convex) polygon that includes them all. The
Minkowski sums of convex polygons can be computed as the convex hull of all sums a + b of vertices of
P and Q respectively. If each summand has n vertices, this implies computing n2 vertex sums and, then,
constructing their convex hull, which requires about n2 log n operations.

For a more efficient method, let us recall Corollary 1.7. It follows that the set of outer normals to edges
of P + Q is the union of the sets of the outer normals to edges of P and Q. The method starts at vertex
p ∈ P and vertex q ∈ Q, and shall walk around each polygon in, say, counter-clockwise order. At the same
time, we shall be defining P +Q as a sequence of edges, their endpoints being the sum’s vertices, starting
from a+ b. Let e be the edge of P or Q with smallest slope, at our current position. Then e becomes the
next edge in P +Q, and we move to the endpoint of e on its polygon.

Formally, this algorithm sorts the n outer normals of P and of Q, then merges the two lists, thus obtaining
the sorted outer normals of P +Q. This algorithm takes a linear number of operations in n. Therefore, it
is clearly faster than computing the convex hull and, also, optimal in its dependence on n.

2 Polygon decomposition

We study the following “inverse” operation of Minkowski addition, for lattice polygons, i.e., having vertices
with integer coordinates.

Definition 2.1 Given a lattice polygon S, the minkowski-decomposition problem is to decide whether
there exist lattice polygons P,Q such that P +Q = S, where P,Q are not points; equivalently, neither equals
S. If so, find P .
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If S = P + Q then, having determined P , it is easy to compute Q. So it suffices to find one summand, if
it exists. Excluding point summands implies that we also exclude S from being considered a summand of
itself. In other words, we are only interested in nontrivial (or proper) summands; see Figure 2 for examples.
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Figure 2: Minkowski decompositions of all 16 lattice polygons with one interior lattice point.

Let us, for a moment, suppose that we are looking for decompositions where P,Q share no parallel edges.
Then, using Corollary 1.7, summand P is the polygon defined by a subset of the edges in S whose vector
sum is zero. However, since edges in S may be the sum of two strongly parallel edges from P,Q, we
should be more careful. Let lattice polygon S be defined by vertices v0, v1, . . . , vn−1 ∈ Z2. Every edge is
represented by an integer vector, namely u1 = (v1 − v0), . . . , un = (v0 − vn−1) ∈ Z2. We write each integer
vector ui as the product of a “primitive” integer vector ei and an “integer length” di:

ui = diei, di ∈ N∗, ei ∈ Z2, i = 1, . . . , n,

where the absolute values of the coordinates of ei are coprime. A lattice polygon is a summand of S iff its
edge set equals

{kiei, i = 1, . . . , n} for some ki ∈ N, 0 ≤ ki ≤ di, s.t.

n∑
i=1

kiei = (0, 0). (1)

In other words, the summand is defined by subvectors of the edge vectors of S, whose vector sum is zero.
If k1 = · · · = kn = 0 then we obtain a trivial point summand. If ki = di, i = 1, . . . , n, then we trivially
obtain S. For the summand to be nontrivial, at least one ki must be positive and at least one ki must be
≤ di − 1.

One algorithm is to reduce minkowski-decomposition to computing a subset of integers that sum up to
zero. This corresponds to the following hard problem1.

1It is a famous NP-complete problem.
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Definition 2.2 Given a set (or multiset) of n integers, subset-sum is the problem of deciding whether
there exists a non-empty subset, such that its elements add up to zero.

An instance of minkowski-decomposition can be transformed to an instance of subset-sum, such that
the former admits a solution iff the latter does. Moreover, the solution sets are in bijective correspondence.
Given a lattice polygon S with primitive edge vectors ei = (eix, eiy) ∈ Z2, i = 1, . . . , n, let

E = max
i=1,...,n

max{|eix|, |eiy|}, D = max
i=1,...,n

di.

The input to subset-sum shall be di copies of integer ai, where

ai = eix + nDE · eiy ∈ Z, i = 1, . . . , n,

except for a1 which is given in d1 − 1 copies.

Problem 2.3 Prove that S admits a nontrivial decomposition, where one summand has edges kiei as in
equation (1), iff there is a non-empty subset of all ai’s that sums up to zero, which includes ai a number
of ki times, with k1 < d1 and ki ≤ di, i = 2, . . . , n.

The constraint k1 ≤ d1−1 does not reduce generality since it must hold for at least one of the two nontrivial
summands, if they exist. Subset sum is solved with a number of operations which is proportional to n3D3E2.

Problem 2.4 Let v1, . . . , vn be the outer normals to the edges of S, and h(S, vi) = sup{〈s, vi〉 : s ∈ S}.
Show that S = P + Q ⇔ P,Q are defined by the same outer normals, h(S, vi) = h(P, vi) + h(Q, vi), i =
1, . . . , n, and neither of P,Q is a point.

3 Polynomials

There is a theory of polynomials which aspires to exploit their sparseness, in other words understand their
behavior when we take into account only their nonzero terms, i.e., terms for which the coefficient is known
to be nonzero. Take a bivariate polynomial f(x1, x2). Its support A = supp(f) = {a1, . . . , aµ} ⊂ N2 is the
set, with cardinality µ, of exponent vectors corresponding to terms with nonzero coefficients:

f(x1, x2) = c1x
a11
1 xa122 + · · ·+ cµx

aµ1
1 x

aµ2
2 , cj 6= 0, j = 1, . . . , µ,

where aj = (aj1, aj2) ∈ N2 is an exponent vector.

Definition 3.1 The Newton polygon of f(x1, x2) is the convex hull of the points in A.

Figure 3 depicts the Newton polygon of a bivariate polynomial and compares it with the Newton polygon
of a polynomial with the same total degree, where every coefficient is nonzero. Clearly, Newton polygons
provide a more precise description than total degree does. The Newton polygon is named after Newton,
who introduced the Newton diagram in studying bivariate polynomials2. The Newton diagram of points
(j, gj) was used for finding roots of real polynomials of degree > 4 in the lecture of October 7, 2014.

Problem 3.2 Let f, g be bivariate polynomials with Newton polygons P,Q, respectively. Prove that the
Newton polygon of f · g is the Minkowski sum P +Q.

It follows that, if we can factorize a given bivariate polynomial into f = g1·g2, then it holds that S = P1+P2,
where S, P1, P2 are the Newton polygons of f, g1, g2, respectively. Hence, Minkowski decomposition provides
a necessary condition for the factorization of a polynomial.

2I. Newton. The Correspondence of I. Newton, 1676-1687. Cambridge Univ. Press, UK, 1960.
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Figure 3: The Newton polygon of polynomial c1y + c2x
2y2 + c3x

2y + c4x + c5xy. The dotted triangle is
the Newton polygon of the dense polynomial of the same total degree.

4 Mixed volume

This section considers volume (or area) of polygons and introduces the concept of mixed volume (or mixed
area) defined for two polygons. We denote by Vol(P ) the Euclidean volume (area) of polygon P , where
unit volume is assigned to the unit square; clearly, Vol(P ) = 0 if P is a line segment or point.

We have defined addition between polygons. Let us now define scalar multiplication: The scalar multiple
of any set P ⊂ R2 by a positive real number λ ∈ R>0 is λP = {λp | p ∈ P} ⊂ Rn. In particular, if P is a
polygon, so is λP . Moreover, we know the latter’s volume: Vol(λP ) = λ2Vol(P ).

Equipped with these two operations, we can consider the following expression:

Proposition 4.1 For given polygons P1, P2 and positive real parameters λ1, λ2, the expression Vol(λ1P1 +
λ2P2) is a homogeneous polynomial in λ1, λ2, of degree 2.

Some of claims of this proposition are straightforward: Setting λ1 = 0, the expression becomes Vol(λ2P2) =
λ22Vol(P2). By looking at examples, it is clear that there is also a multilinear term in the development of
Vol(λ1P1 + λ2P2), i.e., a term corresponding to product λ1λ2. Hence,

Vol(λ1P1 + λ2P2) = λ21Vol(P1) + λ1λ2M + λ22Vol(P2),

for some M 6= 0. In fact M ≥ 0.

Definition 4.2 The coefficient of λ1λ2 in Vol(λ1P1 + λ2P2) is the mixed volume MV (P1, P2) of P1, P2.

Figure 4: Two polygons, their Minkowski sum, and their mixed volume (white area in the Minkowski sum).

When P1 = P2 we set λ1 = λ2 and calculate MV (P1, P2) = 2Vol(P1). Mixed volume scales linearly with
each λi. These lead to an equivalent definition of mixed volume:
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Definition 4.3 For polygons P1, P2, there is a unique, up to multiplication by scalar, real-valued function
MV (P1, P2) ≥ 0, called mixed volume, which is multilinear with respect to Minkowski addition and scalar
multiplication:

MV (P1, λP2 + ρP ′2) = λMV (P1, P2) + ρMV (P1, P
′
2), λ, ρ ∈ R≥0, polygon P ′2.

To fully define mixed volume we require that MV (P1, P1) = 2 Vol(P1).

Problem 4.4 Compute the mixed volume when both polygons are unit triangles S with vertices on the
coordinate axes and scaled by d1, d2.

Obviously MV is invariant under permutation of the polygons. It is also invariant under translations, and
under rotations that preserve volume. It is also monotone w.r.t. inclusion: P ′1 ⊂ P1 ⇒ MV (P ′1, P2) ≤
MV (P1, P2).

There is an explicit Inclusion-exclusion formula: MV (P1, P2) = Vol(P1 + P2)−Vol(P1)−Vol(P2).

Besides mixed volume, another famous multilinear function is the determinant (and also the permanent)
of a matrix: When a matrix column is scaled by λ, the determinant is scaled by λ, and when it is the
sum of two column vectors, the determinant becomes the sum of two matrix determinants, each matrix
containing one summand column.

Problem 4.5 For segments with dimP1 = dimP2 = 1, their MV (P1, Pn) = Vol(P1 +P2) = |detP |, where
P = [P1 P2] is a 2× 2 matrix whose columns correspond to P1, P2.

Note P1 + P2 is a parallelogram, which degenerates to a segment iff P1, P2 are parallel. In other words,
vectors P1, P2 ∈ R2 are linearly independent iff MV (P1, P2) > 0.

Problem 4.6 MV (Q1, Q2) > 0⇔ ∃ segments Ei : dimEi = 1, Ei ⊂ Qi, i = 1, 2 s.t. MV (E1, E2) > 0.

4.1 Counting roots

We already saw how Newton polygons provide a bridge from the algebraic to the geometric setting, since
Minkowski addition and decomposition are related to polynomial multiplication and factorization. There
is an algebraic theory that considers the Newton polygons of bivariate (and multivariate) polynomials
so as to obtain “algebraic” information on them such as the number of common roots for two bivariate
polynomials.

The cornerstone of this theory is Bernstein’s upper bound on the number of common roots of a square
polynomial system3. This bound is also called the BKK after Kushnirenko and Khovanskii. We state it
for two bivariate polynomials.

Theorem 4.7 Consider bivariate polynomials f1, f2 with real coefficients. If their coefficients are generic
(e.g., random), the number of their complex common roots is MV (Q1, Q2), where Qi is the Newton polygon
of fi.

Problem 4.8 c0 + c1x+ c2x
2y + c3xy, b0 + b1x+ b2y + b3xy. The Newton polygons and their Minkowski

sum is shown in Figure 4. Compute the mixed volume: is it optimal? Also, compare it to the classic Bézout
bound.

Problem 4.9 Show that BKK generalizes the fundamental theorem of algebra for a univariate polynomial.
Show that it is at most as high as Bézout’s bound, which equals the product of the polynomials’ total degrees:
for which Newton polygons the two bounds coincide?

3D.N. Bernstein. The number of roots of a system of equations, Function. Anal. & Applic., 9:183–185, 1975. Translated
from the Russian.
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