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Tensors

Tensors (also referred to as multi-way arrays) are present both in pure math-

ematics and in more applied sciences: computer science, engineering, physics,

chemistry. . . The central problem I will consider here is about tensor decom-

position. We have a set of tensors that are called simple. Given any tensor

we would like to express it as a sum of simple tensors.

As an example, imagine a single antenna that receives a signal from many

mobile phones at the same time. The receiver must decompose this super-

posed electromagnetic wave into original simple signals, each one encoding

a single conversation.

Figure 1: More and more people use mobile phones. A lot of advanced

mathematics is involved in wireless communication. A part of it is the theory

of tensor decomposition.

As another example, �uorescence spectroscopy is a method to analyse

samples of solutions and determine concentration of chemicals. Each sample

is excited by light at various wavelengths and the light emitted is measured.

The data is collected as a tensor, and we need to determine the decomposition

of this tensor in order to extract information about the chemicals and their

concentrations.
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Figure 2: Mathematicians rather do not use spectroscopy. However we work

on the theory of tensor decomposition involved. Here are some toys of my

daughter. Oats, potato starch and millet represent chemicals with various

�uorescent properties, and they are disolved in water in di�erent concentra-

tions.

In other words, for many sciences it is critical to extract simple and

meaningful ingredients from some complicated data. In mathematical terms,

this corresponds to the problem of decomposing tensors. The key notion here

is rank of tensor.

The rank of a tensor is the minimal number of simple tensors that are

needed in the decomposition. Thus in the examples above, it should corre-

spond to the number of mobile phones talking, or the number of di�erent

chemicals in the sollutions. �Should correspond�, not �corresponds�, because

there are situations when the decompositions are not unique. For example,

if there are too many mobile phones for the capabilities of antenae, or too

few samples with solutions containing too many di�erent chemicals.

Polynomial decompositions

In this class we will study the decompositions of polynomials into sums of

powers. Let P (x, y) be a homogeneous polynomial in two variables:

P (x) = adx
d + ad−1x

d−1y + · · ·+ a1xy
d−1 + a0y

d

where a0, a1, . . . , ad are real (or complex) numbers.

Problem. What is the minimal number r of linear polynomials `i(x) =
bix+ ciy, such that

P (x, y) = ±`d1 ± `d2 ± · · · ± `dr?

Such number r is called the rank of P (x, y) (or Waring rank, or symmetric

rank).
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Exercise 1. Find the rank of P (x, y) = x2 + xy + 1
2y

2.

The derivatives of P (x, y) are the polynomials:

αyP :=
∂P (x, y)

∂x
= dadx

d−1 + (d− 1)ad−1x
d−2y + · · ·+ 2a2xy

d−2 + a1y
d−1

βyP :=
∂P (x, y)

∂y
= ad−1x

d−1 + 2ad−2x
d−2y + · · ·+ (d− 1)a1xy

d−2 + da0y
d−1

Exercise 2. Calculate αy(x2 + xy + 1
2y

2), βy(x2 + xy + 1
2y

2).

We can iterate derivatives: for instance, a double derivative of P (x, y) in
x is the polynomial

α2yP := d(d− 1)adx
d−2 + (d− 1)(d− 2)ad−1x

d−3y + · · ·+ a2y
d−2

and so on. The �hook y� notation is convenient to allow algebraic operations

on derivatives: for example,

(αβ − α2)yP = (αy(βyP ))− αy(αyP )

(α2 + αβ − 2β2)yP = αy(αyP ) + (αy(βyP ))− 2(βy(βyP ))P (x)

(α− β)(α+ 2β)yP = αy(αyP + 2βyP )− βy(αyP + 2βyP ).

Exercise 3. Calculate

(αβ − α2)y(x2y − xy2).

The following are the derivation rules:

• Θy(P +R) = ΘyP + ΘyR;

• (Θ + Φ)yP = ΘyP + ΦyP ;

• (fΘ)yP = Θy(fP ) = f(ΘyP );

• (Θ + Φ)y(P +R) = ΘyP + ΘyR+ ΦyP + ΦyR;

• ΘΦyP = Θy(ΦyP ) = Φy(ΘyP );

• (fα+ gβ)y(PR) = ((fα+ gβ)yP )R+ P ((fα+ gβ)yR).

Here P = P (x, y), and R = R(x, y) are polynomials, while Θ, and Φ are

algebraic expressions in α and β, for example Θ = α2+αβ−2β2, Φ = α3−β3
and so on. f and g are (real or complex) numbers, and (fα+ gβ) is a linear

derivative.

Exercise 4. Show that (bα− aβ)y
[
(ax+ by)d

]
= 0 for all numbers a, b and

for any degree d > 0.
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Exercise 5. Show that β(2α−β)y
[
(x+ 2y)d + xd

]
= 0 for any degree d > 0.

Exercise 6. Show that (α + β)β(2α − β)y
[
(x+ 2y)d + xd + (x− y)d

]
= 0

for any degree d > 0.

Exercise 7. Suppose that (bα−aβ)yP = 0 for some homogeneous polynomial

P = P (x, y) of degree d. Show that P = c(ax+ by)d for some number c.

Exercise 8. Find a (non-zero) quadratic expression in α and β of the form

Θ = aα2 + bαβ + cβ2,

such that Θy(x3y + xy3) = 0. What is the rank of P (x, y) = x3y + xy3?

General method of �nding rank of P (x, y): Find an algebraic expression

Θ in α and β such that ΘyP = 0, and

Θ = (b1α− a1β)(b2α− a2β) · · · (brα− arβ).

If the linear forms (biα − aiβ) are pairwise non-proportional, then we can

write the following decomposition of P

P (x, y) = c1(a1x+ b1y)d + c2(a2x+ b2y)d + · · ·+ cr(arx+ bry)d

for some numbers cr. The lowest possible degree r of such Θ is the rank of P ,
and in this case we say that the decomposition above is called a minimal

decomposition.

Exercise 9. Find the rank of P (x, y) = x3y. Is the minimal decomposition

of this polynomial unique (up to order and rescaling, see below)?

Let me remark that we can always change the order in the decomposition,

and we can also rescale the linear forms. For instance, let

P (x, y) = 3x6 + 6x5y + 75x4y2 + 140x3y3 + 255x2y4 + 186xy5 + 65y6.

Then

P (x, y) = (x+ 2y)6 + x6 + (x− y)6

= x6 + (x− y)6 + (x+ 2y)6

= 1
729(3x− 3y)6 + 64(12x+ y)6 + x6

and so on. All these are considered the same decomposition up to order and

rescaling. In fact, the polynomial P de�ned above has a unique decomposi-

tion (up to order and rescaling).
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Exercise 10. Prove that the rank of P (x, y) = x4y + 8x2y3 + 16
5 y

5 is 2. Is

there a unique minimal decomposition of this polynomial (up to order and

rescaling)?

Exercise 11. Can you �nd a homogeneous polynomial P (x, y) of rank 2,
which has more than one decomposition as a sum of two powers of linear

forms:

P (x, y) = (a1x+ b1y)d + (a2x+ b2y)d?

How many such decompositions does your polynomial have (up to order and

rescaling)?

More advanced material

Analogously, we can consider homogeneous polynomials in more variables

and decompose them into sums of powers of linear forms.

Exercise 12. Let P (x, y, z) = x4 + y4 + z4 − 12x2yz − 12xy2z − 12xyz2.
Show (αβ−αγ−β2 +γ2)yP = 0. Here γ denotes the derivative with respect

to z.

The algebraic expressions in α, β, γ, . . . really are just polynomials in

these variables, although we have to remember their role as derivations of

polynomials in x, y, z, . . . Denote by C[α, β, γ, . . . ] the set of all polynomials

in α, β, γ, . . . with complex coe�cients.

Let Ann(P ) ⊂ C[α, β, γ, . . . ] be the annihilator of P :

Ann(P ) := {Θ ∈ C[α, β, γ, . . . ] | ΘyP = 0} .

Exercise 13. Show that if Θ,Φ ∈ Ann(P ), and Ψ ∈ C[α, β, γ, . . . ], then

aΘ + bΦ ∈ Ann(P ), and ΘΨ ∈ Ann(P ) for any complex numbers a, b.

This exercise shows Ann(P ) is an ideal in the polynomial ring.

Exercise 14. Let Θ ∈ C[α, β, γ, . . . ] be homogeneous of degree d. Let ` =
ax+ by + cz + · · · be a linear polynomial in x, y, z. Prove that:

Θ(a, b, c, . . . ) = 0 ⇐⇒ Θy(`d) = 0.

Here Θ(a, b, c, . . . ) denotes the evaluation of Θ at α = a, β = b, γ = c,. . . In
the situation of equivalence, we say that Θ vanishes on `.

Exercise 15. Suppose P = `d1 + `d2 + · · · + `dr , and Θ ∈ C[α, β, γ, . . . ] is

homogeneous. Show that if Θ vanishes on each `i, then ΘyP = 0.

Exercise 16. Let P (x, y, z) = x4 + y4 + z4 − 12x2yz − 12xy2z − 12xyz2.
Find two non-proportional Θ,Φ ∈ C[α, β, γ] of degree 2 such that

ΘyP = ΦyP = 0.

What can you say about the rank of P?
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