
Berkeley Math Circle
Monthly Contest 8, Solutions

1. Find a positive integer satisfying the following three clues:

• When multiplied by 2, it yields a perfect square.

• When multiplied by 3, it yields a perfect cube.

• When multiplied by 5, it yields a perfect fifth power.

Solution. It is reasonable to try a number of the form 2a3b5c, where a, b, and c are nonnegative integers. We want

2a+13b5c is a square, i.e. 2|a + 1, 2|b, and 2|c
2a3b+15c is a cube, i.e. 3|a, 3|b + 1, and 3|c
2a3b5c+1 is a fifth power, i.e. 5|a, 5|b, and 5|c + 1.

We can now search for a, b, and c separately. We find that n0 = 215320524 is a solution.

2. Determine whether it is possible to write the numbers 1, 2, . . . , 24 on the edges of
the 3 × 3 grid of squares shown, one number to each edge, such that the sum of
the six numbers on every path of minimal length from the upper left corner to
the lower right corner is the same.

Solution. It is possible, and two especially simple solutions are shown. To check
that they work without going through every path, one can use the following
strategy: First notice that in each of the nine unit squares, the sum of the left
and bottom edges equals the sum of the top and right edges. Now, given any path
that includes a rightward move (R) followed by a downward move (D), we can
replace RD by DR without changing the sum of the edges. Now a minimal path
consists of three R’s and three D’s, and each D can move past each R at most
once; so after at most nine steps the path will be converted to DDDRRR. This
proves that all paths have the same sum.
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3. Let A1A2 · · ·A2n be a convex 2n-gon. Prove that there is an i (1 ≤ i ≤ n) and a pair of parallel lines, each
intersecting the 2n-gon only once, one at Ai and one at An+i.

Solution. Consider the “highest” and “lowest” points of the 2n-gon, with respect to any chosen orientation. Unless
a side of the 2n-gon is perfectly horizontal, these points will be unique and thus a horizontal line through them will
not meet the 2n-gon again. These two points will also be vertices of the 2n-gon; call them Ai and Aj respectively.
Say that the imbalance in this situation is i− j mod 2n, which (being nonzero) we can think of as an integer from
1 to 2n− 1 inclusive. We would like to prove that the 2n-gon can be rotated such that the imbalance is n.

Consider smoothly rotating the 2n-gon counterclockwise (assume that the vertices are labeled A1, . . . , A2n in counter-
clockwise order). Note that the imbalance does not change unless one of the sides becomes momentarily horizontal.
If the top side becomes horizontal, it goes down by 1; if the bottom side becomes horizontal, it goes up by 1; and if
both sides momentarily become horizontal, it does not change at all. But after rotating by 180◦, the top and bottom
vertices are switched: if the imbalance was between 0 and n, it is now between n and 2n and vice versa. Since the
imbalance can never be 0 and never jumps by more than 1, it must be n at some point.

4. Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that

f(x)f(x + 1) = g(h(x)).

Solution. Write f(x) = ax2 + bx + c, a 6= 0. It is a familiar fact that the graph of a quadratic function always has
an axis of symmetry, specifically the line x = − b

2a . By substituting

u = x +
b

2a
+

1

2
,



we can make f(x) = au2 − au + d symmetric about the line u = 1/2. Then f(x + 1) = au2 + au + d is symmetric
about the line u = −1/2, and their product is symmetric about the line u = 0:

f(x)f(x + 1) = (au2 − au + d)(au2 + au + d)

= a2u4 + 2adu2 − a2u2 + d2

= g(u2),

where g(v) = a2v2 + (2ad− a2)v + d2. But now

u2 =

(
x +

b

2a
+

1

2

)2

is a quadratic function h(x) of x.

5. For x a positive real number with finitely many decimal places, denote by r(x) the number formed by reversing the
digits and decimal point of x. For instance, r(98.6) = 6.89 and r(740) = 0.047.

(a) Prove that for all positive real numbers x and y with finitely many decimal places,

r(xy) ≤ 10r(x)r(y).

(b) Determine whether there exist values of x and y, each having at least 2015 nonzero digits, such that equality
holds.

Solution. (a) Write

x =

i1∑
i=i0

xi10i and y =

j1∑
j=j0

yj10j ,

where the xi and yj are digits, and the limits i0, i1, j0, j1 are integers, possibly negative. Then

r(x) =

i1∑
i=i0

xi10−1−i and y =

j1∑
j=j0

yj10−1−j ,

and we may multiply:

xy =
∑
i,j

xiyj10i+j and r(x)r(y) =
∑
i,j

xiyj10−2−i−j .

Let (initially) zk =
∑

i+j=k xiyj , a finite sum since x has only finitely many nonzero digits. Then

A :=
∑
k

zk10k = xy, and B :=
∑
k

zk10−1−k = 10r(x)r(y).

If all zk < 10, then the zk are the digits of A and we simply get B = r(A). However, in general, there will be
carrying involved in the multiplication of x by y. Consider the following “carry transform”: find the least k
such that zk ≥ 10, decrease zk by 10, and increase zk+1 by 1. This does not change the sum A at all, and it
decreases the sum B by 99 · 10−2−k. We can only apply the carry transform finitely many times since, once
zk is brought below 10, we move on to zk+1, and continue increasing k until 10k > A, at which point zk must
remain zero. Now A still equals xy, and the zk are its digits; and B has been decreasing so

r(xy) = r(A) = B ≤ 10r(x)r(y).

(b) The answer is yes; the choice

x =

2015︷ ︸︸ ︷
111 · · · 1, y =

2015 1’s︷ ︸︸ ︷
1

2014︷ ︸︸ ︷
000 · · · 0 1

2014︷ ︸︸ ︷
000 · · · 0 1 · · · 1

is readily seen to yield

r(xy) = 10r(x)r(y) = 0.

20152︷ ︸︸ ︷
11111 · · · 1 .



6. Let ABC be an acute triangle, and P a point on the interior of side BC. Let I be the incenter of triangle ABC,
and denote by D the foot of the altitude from I to BC. Line BI meets the internal angle bisector of ∠APC at X,
while line CI meets the internal angle bisector of ∠APB at Y . Show that the points D, P , X, Y lie on a circle.

Solution. First, notice that ∠Y PX is a right angle. Thus, we claim that in fact
D and P lie on a circle with diameter XY ; in light of this it suffices to prove that

DX2 + DY 2 = PX2 + PY 2.

Let K and L be the feet of the altitudes from X and Y to BC, respectively. By
the Pythagorean Theorem we may write these as

DX2 = DK2 + XK2

DY 2 = DL2 + Y L2

PX2 = PK2 + XK2

PY 2 = PL2 + Y L2

A

B C

I

D P

X

Y

KL

In light of this it is sufficient to show that

DK2 + DL2 = PK2 + PL2.

Without loss of generality, assume L, D, P , K lie in that order. Note that X is the B-excenter of 4ABP . From
this configuration we derive that

BK =
1

2
(AB + AP + BP )

PK =
1

2
(AB + AP −BP )

From this we derive that

DK + PK = BK + PK −BD

=
1

2
(2AB + 2AP − (AB + BC −AC))

=
1

2
(2AP + AB + AC −BC)

Repeating the same calculation with 4ACP , we see this equals DL + PL too. Thus, we have

DK + PK = DL + PL.

Multiplying both sides by DP = DK − PK = PL − DL, we obtain DK2 − PK2 = PL2 − DL2, completing the
proof.

7. A fissile square is a positive integer which is a perfect square, and whose digits form two perfect squares in a
row, which will be called the left square and the right square. For example, 49, 1444, and 1681 are fissile squares
(decomposing as 4|9, 144|4, and 16|81 respectively). Neither the left square nor the right square may begin with the
digit 0.

(a) Prove that every square with an even number of digits is the right square of only finitely many fissile squares.

(b) Prove that every square with an odd number of digits is the right square of infinitely many fissile squares.

Solution. We denote the right square by r2, its number of digits by d, the left square by y2, and the entire fissile
square by x2, so

x2 = 10d · y2 + r2.

(a) If d = 2k is even, then

r2 = x2 − 102k · y2

= (x + 10ky)(x− 10ky).



Now both factors are positive integers, at most r2, so their average x is also at most r2. This shows that the
fissile square x2 can only take on finitely many values.

(b) We first show that 1 is the right square of infinitely many fissile squares, i.e. that

x2 − 10y2 = 1

has infinitely many solutions. Equations of the form x2 −Dy2 = ±1 are called Pell equations and have been
studied in great detail; but here the solution is not so difficult. First note that 361 is one such fissile square:
there is a solution x = 19, y = 6. Next, consider the positive integers xn, yn that arise from expanding

(19 + 6
√

10)n = xn + yn
√

10.

They may also be described by the recursion x0 = 1, y0 = 0, xn+1 = 60xn + 19yn, yn+1 = 19yn + 6xn; they also
satisfy the conjugate relation

(19− 6
√

10)n = xn − yn
√

10.

Then
x2
n − 10y2n = (xn + yn

√
10)(xn − yn

√
10) = [(19 + 6

√
10)(19− 6

√
10)]n = 1n = 1.

Also the xn are strictly increasing, so the x2
n provide infinitely many fissile squares with right square 1.

We now turn to the general case, where r2 has d = 2k + 1 digits. We first find values of n for which 10k|yn.
Note that when the pairs (xn, yn) are reduced mod yn, there are only finitely many possibilities, so there exist
m ≥ 0, n ≥ 1 such that

xm+n ≡ xm and ym+n ≡ ym (mod 10k).

We can now run the recursion backwards, using the relations xn−1 = −60xn + 19yn, yn+1 = 19yn − 6xn that
describe multiplication by 19− 6

√
10, to deduce that

xn ≡ x0 = 1 and yn ≡ y0 = 0 (mod 10k).

So 10k|yn, and moreover the recursion becomes periodic at the nth step so y2n, y3n, . . . are divisible by 10k. We
can now multiply each of the corresponding fissile squares

(square)

2k︷ ︸︸ ︷
0 · · · 0 1

by r2 to get fissile squares
(square)r2

with right square r2.


