
Berkeley Math Circle
Monthly Contest 6, Solutions

1. Let ABCD be a square. We randomly select a point P inside the square, uniformly and at random. What is the
probability that ∠BPC > 90◦?

Solution. Let ω be the semicircle whose diameter is BC and whose interior lies inside ABCD. Let M be denote the
center of ω. We use the result that

• ∠BPC < 90◦ if P is inside ω,

• ∠BPC = 90◦ if P is on ω, and

• ∠BPC > 90◦ if P is outside ω.

In order to prove this, we first show the result when P is on ω (this result is sometimes called Thales’ Theorem.)
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180◦ = 360◦ − (∠PMB + ∠PMC) as ∠PMB + ∠PMC = 180◦

= (180◦ − ∠PMB) + (180◦ − ∠PMC)

= 2∠BPM + (180◦ − ∠PMC) MB = MP in 4BMP

= 2∠BPM + 2∠CPM MC = MP in 4CMP

= 2∠BPC

as claimed.

In the case that P is outside ω, we may intersect segment MP with ω to obtain a point K. Then 90◦ = ∠BKC >
∠BPC (since, say ∠BKM > ∠BPM and ∠CKM > ∠CPM).
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The case where P is inside ω is dealt in the same way.

Thus, we see that we seek the probability that P lies inside ω. The area of ω inside ABCD is simply 1
2π( 1

2 )2 = 1
8π

(choosing our units so that AB = 1), and the area of ABCD is 1; hence the answer is 1
8π.

2. Alice picks four numbers from the set {1, 2, 3, 4, 5, 6}, tells Bob their product and asks him to guess their sum. Bob
realizes he cannot even determine for sure whether the sum is odd or even. What is the product of the numbers
Alice chose?



Solution. Let P be said product. Evidently there are two distinct sets of numbers {x1, x2, x3, x4} and {y1, y2, y3, y4}
such that x1x2x3x4 = y1y2y3y4 = P , but x1 + x2 + x3 + x4 and y1 + y2 + y3 + y4 have different parity.

Instead of considering the four numbers Alice picks, we consider instead the two numbers Alice does not pick;
{x5, x6} and {y5, y6}. They have the same properties we described above, since

x5x6 =
6!

x1x2x3x4
=

720

P
=

6!

y1y2y3y4
= y5y6

and analogously the sums also have different parities.

Thus we are looking for pairs of distinct numbers in {1, 2, 3, 4, 5, 6} which have the same product but different sums.
We can record the entire multiplication table, as below.

× 1 2 3 4 5 6
1 2 3 4 5 6
2 6 8 10 12
3 12 15 18
4 20 24
5 30
6

The numbers with duplicate entries are

6 = 6 · 1 = 2 · 3
12 = 2 · 6 = 3 · 4

Of these, 12 has the desired property but 6 does not. Hence, Alice chose one of the quadruples {1, 3, 4, 5} or
{1, 2, 5, 6}; the product is then P = 1 · 3 · 4 · 5 = 1 · 2 · 5 · 6 = 60.

3. (a) Prove that for all real numbers x and y,

x2 − 2y2 = −[(x+ 2y)2 − 2(x+ y)2].

(b) How many positive integer solutions does the equation x2 − 2y2 = 1 have?

(c) How many positive integer solutions does the equation x2 − 2y2 = 5 have?

Remark. When we ask “how many,” we ask for an answer (either a nonnegative integer, or that there are infinitely
many) with proof.

Solution. (a) This is simply an algebra calculation:

−[(x+ 2y)2 − 2(x+ y)2] = −[x2 + 4xy + 4y2 − 2(x2 + 2xy + y2)]

= −[x2 + 4xy + 4y2 − 2x2 − 4xy − 2y2]

= −[−x2 + 2y2]

= x2 − 2y2.

(b) There are infinitely many. Begin at the solution x0 = 3, y0 = 2 and apply the transformation

xn+1 = xn + 2yn, yn+1 = xn + yn.

By part (a), the value of x2n − 2y2n is alternately 1 and −1 (to be precise, (−1)n). Also, all the xn are positive
so y0 < y1 < y2 < · · · and we never repeat a pair (x, y). Thus we get infinitely many solutions to x2− 2y2 = 1.
(With some more work one can prove that the (x2n, y2n) are all positive integer solutions.)

(c) There are no solutions. Look at the remainders of the terms mod 5. The term x2 must be 0, 1, or 4; the term
2y2 must be 0, 2, or 3. The only way these can equal each other is if 5|x and 5|y. But then 25|x2 − 2y2 = 5, a
contradiction.



4. The Moria Indestructible Phone Co. has hired you to test the hardiness of their newest smartphone model, the
Mithril II. Your assignment is to determine the lowest floor of the Burj Khalifa tower (the world’s tallest building,
with 163 floors) from which the phone must be dropped to break it. You can ride the elevator to any floor, drop
the phone to the ground, and then test whether it is intact. You may assume that if the phone breaks at a given
floor, it consistently breaks at that floor and all higher floors. But the company has given you only two Mithril II’s
to test, and once one of them breaks, it remains broken.

What is the minimum number of drops needed to determine the minimum floor of breaking, or else to conclude that
the phone will withstand dropping from any of the floors?

Solution. Here is a strategy requiring at most 18 drops. Drop the first phone from the 18th floor. If it breaks, drop
the second phone from floors 1, 2, . . . , 17 in that order to determine the minimum breaking floor. Otherwise, drop
the first phone from the 18 + 17 = 35th floor. If it breaks, use the 16 remaining drops to test the second phone on
floors 19 through 34. Otherwise, drop the first phone from the 18 + 17 + 16th floor, and so on. If the first phone
makes it to the 18 + 17 + · · ·+ 5 = 161st floor, then there are 4 drops left, more than enough to test it on the last
two floors.

Suppose that there existed a strategy requiring at most 17 drops. There are 164 possible “strengths” of the Mithril
II (the breaking floor could be 1, 2, . . . , 163 or undefined). When the strategy is applied to one of these strengths,
the result is a sequence of intact (I) or broken (B) outcomes containing at most two B’s and having length at most
17. In fact, we can arrange for the sequence to have length exactly 17 by declaring that, if at a given point the
strategy stops and declares the phone strength, the outcomes of any unused drops are arbitrarily designated I. Then
each phone strength has a “signature” of 17 letters, each B or I, with at most two B’s. But the number of possible
signatures is only (

17

0

)
+

(
17

1

)
+

(
17

2

)
= 154.

This shows that there are some two phone strengths that have the same signature and therefore cannot be distin-
guished by the claimed strategy.

5. Squares ABDE, BCFG and CAHI are drawn exterior
to a triangle ABC. Parallelograms DBGX, FCIY and
HAEZ are completed. Prove that ∠AY B + ∠BZC +
CXA = 90◦.

Solution. Let ρ be the 90◦ rotation about the center
of square ABDE, counterclockwise (orienting 4ABC to
have its vertices in counterclockwise order). Note that
segments CA and ZE are congruent and perpendicular
(thanks to square CAHI and parallelogram HAEZ), so
ρ(C) = Z. Likewise, segments BC and DX are con-
gruent and perpendicular, implying ρ(X) = C. Now
ρ(XC) = CZ which implies ∠ZCX = 90◦. Likewise
∠XAY = ∠Y BZ = 90◦. With three of the angles of
the reentrant hexagon XAY BZC known, the sum of the
other three is readily computed:
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∠AY B + ∠BZC + ∠CXA

= (180◦ − ∠BAY − Y BA) + (180◦ − ∠CBZ − ∠ZCB) + (180◦ − ∠ACX − ∠XAC)

= 540◦ − (∠BAY + ∠XAC)− (∠CBZ + ∠Y BA)− (∠ACX + ∠ZCB)

= 540◦ − (∠XAY + ∠BAC)− (∠Y BZ + ∠CBA)− (∠ZCX + ∠ACB)

= 540◦ − 3 · 90◦ − (∠BAC + ∠CBA+ ∠ACB)

= 540◦ − 270◦ − 180◦ = 90◦.



6. Let a, b, c be positive real numbers. Show that√
a2 − ab+ b2 +

√
b2 − bc+ c2 +

√
c2 − ca+ a2 + 9

3
√
abc ≤ 4(a+ b+ c).

Solution. By the AM-GM inequality, we know that

(abc)2 ≤ a6 + b6 + c6

3
.

Letting x =
√

a6+b6+c6

3 ≥ abc so that 3x2 = a6 + b6 + c6, we see that it suffices to show

x ≤ 3x2 + 15

12
− 3

3x2 + 3
=
x2 + 5

4
− 1

x2 + 1
.

Now we can compute

x2 + 5

4
− 1

x2 + 1
− x =

(x2 + 5)(x2 + 1)− 4

4(x2 + 1)
− x

=
(x2 + 5)(x2 + 1)− 4− 4x(x2 + 1)

4(x2 + 1)

=
x4 − 4x3 + 6x2 − 4x+ 1

4(x2 + 1)

=
x4 − 4x3 + 6x2 − 4x+ 1

4(x2 + 1)

=
(x− 1)4

4(x2 + 1)

≥ 0

and we’re done.

7. Decide whether there exist positive integers a, b, c such that 3(ab+ bc+ ca) divides a2 + b2 + c2.

Solution. The answer is no: such integers do not exist. In what follows, νp(n) will denote the exponent of p in the
prime factorization of n.

Assume without loss of generality that a, b, c do not have some common divisor, and a2 + b2 + c2 = 3k(ab+ bc+ ca).
Write

(3k + 2)(a2 + b2 + c2) = 3k · (a+ b+ c)2.

Since 3k + 2 ≡ 2 (mod 3), there is a prime p ≡ 2 (mod 3) with νp(3k + 2) odd (in particular, p | 3k + 2).

We first show that p 6= 2. Let us assume on the contrary that ν2(3k + 2) is odd (in particular, k is even). Remark
that since a, b, c are not all even, ν2(a2 + b2 + c2) ≤ 1. Furthermore,

ν2(a+ b+ c) = 0 ⇐⇒ ν2(a2 + b2 + c2) = 0.

Now we consider two cases.

• Assume ν2(k) ≥ 2. Then ν2(3k + 2) = 1, ν2(a2 + b2 + c2) ≤ 1. Therefore

ν2(k) + 2ν2(a+ b+ c) ≥ 2 ≥ ν2(3k + 2) + ν2(a2 + b2 + c2)

but equality cannot occur since the relations

ν2(a+ b+ c) = 0 and ν2(a2 + b2 + c2) = 1

cannot hold simultaneously.

• Assume ν2(k) = 1. Then ν2(3k + 2) > 1 and is odd. Now

ν2(3k + 2) + ν2(a2 + b2 + c2) = 1 + 2ν2(a+ b+ c).

Thus ν2(a2 + b2 + c2) must be even, so it is zero; consequently ν2(a + b + c) = 0 as well and we obtain
1 < v2(3k + 2) = 1.



Now for the interesting part. Remark p | a+ b+ c and p | a2 + b2 + c2. Without loss of generality b 6≡ 0 (mod p), so
that

a2 + b2 + (a+ b)2 ≡ 0 (mod p) =⇒ a2 + ab+ b2 ≡ 0 (mod p).

Then if x = ab−1, we get that x2 + x + 1 ≡ 0 (mod p). But the left-hand side is the third cyclotomic polynomial,
so either p = 3 or 3 | p− 1, but neither is the case.

Therefore, such a triple (a, b, c) does not exist.


