
Berkeley Math Circle
Monthly Contest 5, Solutions

1. Determine the number of ways to fill a 3× 3 grid with 0’s and 1’s such that each row and column has an even sum.

Solution. The answer is 24 = 16. Denote the table as follows:

a1 a2 a3
b1 b2 b3
c1 c2 c3

Observe that the condition is equivalent to saying that every entry in the table has the same parity as the sum of
the entries in its row (resp. column).

We claim that upon filling a1, a2, b1, b2 there is exactly one way to fill the table. Indeed, we require that

• a3 has the same parity as a1 + a2,

• b3 has the same parity as b1 + b2,

• c1 has the same parity as a1 + b2,

• c2 has the same parity as a2 + b2.

All that’s left to do is check that there is exactly one way to fill in the entry c3. We require c3 to have the same
parity as a3 + b3. But the parity of this is the same as that of a1 + a2 + b1 + b2. Similarly, c1 + c2 has the same
parity as a1 + b1 + a2 + b2. Hence there is exactly one way to fill in c3.

Thus the claim is proved, and the number of ways to fill the entire table is merely the number of ways to fill the
2× 2 upper-left square, which is 24 = 16 as desired.

Remark. This solution generalizes to establish that in general, for an n× n grid (instead of a 3× 3 grid) the answer

is 2(n−1)2 . By using the notation of “taking modulo 2” one can shorten the above solution significantly.

2. Prove that there exists a polynomial f(x, y, z) with the following property: the numbers |x|, |y|, and |z| are the sides
of a triangle if and only if f(x, y, z) > 0.

Solution. Answer:

f(x, y, z) = (x + y + z)(−x + y + z)(x− y + z)(x + y − z) [= x2y2 + y2z2 + z2x2 − x4 − y4 − z4].

It is easily seen that the transformation x 7→ −x, and symmetrically y 7→ −y and z 7→ −z, do not change f , so it
is enough to prove the following statement: If x, y, and z are nonnegative reals, then x, y, and z are the sides of a
triangle if and only if f(x, y, z) > 0.

Moreover, changing the order of x, y, and z does not change f , so we may assume that x ≤ y ≤ z. Now three of the
factors of f(x, y, z), namely x + y + z, −x + y + z, and x− y + z, are clearly nonnegative.

If x, y, and z are the sides of a triangle, the familiar triangle inequality x + y ≥ z implies that the fourth factor
x + y − z is positive. Also, a side of a triangle cannot be zero, from which we get x + y + z > 0, −x + y + z > 0,
x− y + z > 0, and hence f(x, y, z) > 0.

Conversely, if f(x, y, z) > 0, then the four factors must be positive, so x, y, and z are positive and the triangle
inequality x + y > z holds. To construct the triangle, we may draw two circles of radii x and y whose centers Y ,
X are a distance z apart. Because each circle passes both inside and outside the other, the circles intersect at two
points. Let Z be one. Then XY Z is the desired triangle.

3. A triangular number is one of the numbers 1, 3, 6, 10, 15, . . . of the form Tn = 1 + 2 + · · · + n or, equivalently,
Tn = (n2 + n)/2.

Find, with proof, all ways of writing 2015 as the difference of two triangular numbers.

Solution. Since

Tm − Tn =
m2 + m

2
− n2 + n

2
=

m2 − n2 + m− n

2
=

(m + n + 1)(m− n)

2
,



any expression of 2015 as the difference of two triangular numbers yields a factorization 2 · 2015 = 4030 = (m+ n+
1)(m− n). Conversely, assigning values a = m + n + 1, b = m− n to the factors (necessarily both positive) yields a
unique solution

m =
a + b− 1

2
n =

a− b− 1

2

for m and n, which are positive integers if the following two conditions are satisfied:

• a and b have unlike parity (that is, one is even and one is odd). Since 4030 has exactly one prime factor of 2,
this is no restriction.

• a ≥ b + 2. In particular, out of every pair of factors, we must put the larger factor for a.

The primes in the factorization 4030 = 2 · 5 · 13 · 31 may be apportioned to two factors in 16 ways, or 8 ways if the
order of the factors is insignificant. So we get eight solutions:

a b Expression
2 · 5 · 13 · 31 1 T2015 − T2014

5 · 13 · 31 2 T1008 − T1006

2 · 13 · 31 5 T405 − T400

13 · 31 2 · 5 T206 − T196

2 · 5 · 31 13 T161 − T148

5 · 31 2 · 13 T90 − T64

2 · 5 · 13 31 T80 − T49

5 · 13 2 · 31 T63 − T1

4. Let ABCD be a quadrilateral whose diagonals are perpendicular and intersect at P . Let h1, h2, h3, h4 be the
lengths of the altitudes from P to AB, BC, CD, DA. Show that

1

h2
1

+
1

h2
3

=
1

h2
2

+
1

h2
4

. (1)

Solution. The area of triangle ABP is equal to h1 ·AB/2 and also to AP ·BP/2. Hence

1

h2
1

=
AB2

AP 2 ·BP 2
=

AP 2 + BP 2

AP 2 ·BP 2
=

1

BP 2
+

1

AP 2
.

Applying the same transformation to all the terms of (1) yields(
1

AP 2
+

1

BP 2

)
+

(
1

CP 2
+

1

DP 2

)
=

(
1

BP 2
+

1

CP 2

)
+

(
1

DP 2
+

1

AP 2

)
,

a triviality.

5. Weighted coins numbered 2, 3, 4, . . . , 2015 are tossed. The coin numbered i comes up heads with probability 1/(2i2).
What is the probability that an odd number of coins come up heads?

Solution. Let Pn be the probability that an odd number out of the coins whose numbers are at most n (1 ≤ n ≤ 2015
come up heads. For 2 ≤ n ≤ 2015, there are two ways for this to happen: coin n is tails and an odd number of the
preceding coins are heads, or coin n is heads and an even number of the preceding coins are heads. So we have a
recursion

Pn =

(
1− 1

2n2

)
Pn−1 +

1

2n2
(1− Pn−1)

=
2n2Pn−1 − 2Pn−1 + 1

2n2

=
2(n2 − 1)Pn−1 + 1

2n2
.

If we subtract 1/2 from each side, we have the factorization

Pn −
1

2
=

n2 − 1

n2

(
Pn−1 −

1

2

)
.



Now, using the initial value P1 = 0, we have

P2015 −
1

2
= −1

2
·
2015∏
n=2

n2 − 1

n2

= −1

2
·
2015∏
n=2

(n− 1)(n + 1)

n · n

= −1

2
· (1 · 2 · · · 2014)(3 · 4 · · · 2016)

(2 · 3 · · · 2015)(2 · 3 · · · 2015)

= −1

2
· 1 · 2016

2015 · 2

= − 504

2015

and thus

P2015 =
1

2
− 504

2015
=

1007

4030
.

Remark. As the number of coins tends to infinity, the corresponding probability Pn tends to 1/4—surely a non-
obvious fact?

6. Triangle ABC has circumcircle Γ. A circle with center O is tangent to BC at P and internally to Γ at Q, so that
Q lies on arc BC of Γ not containing A. Prove that if ∠BAO = ∠CAO then ∠PAO = ∠QAO.

Solution. Let M and L be the midpoints of the arcs BC of Γ where M lies on the opposite side of line BC as A.

B C

L

M

Q

P

O

A

We claim that the points P , Q, L are collinear. To see this, one could note that an inversion at L with radius
LB = LC swaps points P and Q. Alternatively, we take a homothety at Q mapping the circle with center O to Γ;
since BC is a tangent, this necessarily takes Q to L.

In any case, we can now note that OP and LM are parallel (since they are both perpendicular to BC), and by
assumption points A, O, M are collinear. It follows that APOQ is cyclic, as

∠AQP = ∠AQL = ∠AML = ∠AOP.

But PO = QO, so ∠PAO = ∠QAO.

7. Determine if there exist positive integers a, b, m, n such that a 6= b, m ≥ 2, n ≥ 2, and

aa
..

.a︸ ︷︷ ︸
m

= bb
..

.b︸ ︷︷ ︸
n

.



Solution. There do not exist such positive integers. Assume for a contradiction that there do, however. We may
assume m > n, so that b > a. Since we have equality between a power of a and a power of b, b is a rational power of
a. We write b = ax, where we know that x ≥ 1 is a rational number. Then we may rewrite the b power tower (using
n ≥ 2) as

bb
..

.b︸ ︷︷ ︸
n b’s

= axa
xb

..
.b

︸ ︷︷ ︸
n−2 b’s

On the other hand, we know that this is equal to the power tower of a’s in the given equation, so removing the
bottom a gives

aa
..

.a︸ ︷︷ ︸
m−1 a’s

= xaxb
..

.b︸ ︷︷ ︸
n−2 b’s

In particular, this tells us that x is a rational power of a, x = ay for some nonnegative rational number y. Substituting
and again removing the bottom a gives

aa
..

.a︸ ︷︷ ︸
m−2

= y + ay bb
..

.b︸ ︷︷ ︸
n−2

(2)

Observe that the right side is y plus a rational power of a (simply ay if n = 2). Now consider the possibilities for
this power ap/q. If p/q < 0, then y < 0 and the right side of (2) is less than 1, an impossibility. So either ap/q is
irrational (again impossible) or it is the qth root of a qth power, which is necessarily a positive integer. Then y is
also an integer, namely, the difference between the tower of m− 2 a’s on the left and another power of a. Dividing
both sides of (2) by y indicates that y is at least 1− 1

a = a−1
a times the tower of m− 2 a’s, which is certainly larger

than a power tower of m − 3 a’s. But then ay is larger than a power tower of m − 2 a’s, and clearly the right side
of (2) is even larger than this, so we have a contradiction.

Remark. Notice how wildly false the equality becomes. We are here using that the logarithm of a power is a product,
and the logarithm of a product is a sum, so after removing just 2 a’s, we get the absurd result that the addition of
a small amount relates two power towers.


