
Berkeley Math Circle
Monthly Contest 4, Solutions

1. A toy slot machine accepts two kinds of coins: red and green. When a coin is inserted, the machine returns 5 coins
of the other color. Laura starts with one green coin. Can it happen that after a while, she has the same number of
coins of each color?

Solution. Note that each time Laura uses the machine, the total number of coins she has increases by four, an even
number. She begins with one coin, an odd number, so she will always have an odd number of coins and can never
have the same number of each color.

2. Find the largest number n having the following properties:

(a) No two digits of n are equal.

(b) The number formed by reversing the digits of n is divisible by 8.

Remark. n cannot start with 0, but it can end with 0.

Solution. By condition (a), the number n cannot have more than 10 digits. Write m for the number formed by
reversing the digits of n.

The first digit of n is the last digit of m, and as such must be even, and thus at most 8. Assume that the first digit
is 8.

Then the second digit of n is the tens digit of m, and must be chosen to make the last two digits of m divisible by
4. As 98 and 78 are not divisible by 4, but 68 is, we conclude that the second digit is at most 6. Assume that the
second digit is 6.

Then the third digit must be chosen so that the last three digits of m are divisible by 8, but since 968 is divisible by
8 we derive no information from this.

Appending the remaining digits, selecting the greatest possibility at each turn, we conclude that n is at most
8697543210. As this number indeed satisfies the conditions, it is the answer.

Remark. Note the logical structure of this solution. Everything but the last sentence amounts to a proof that no
number n > 8697543210 satisfies the conditions, by considering the ways that a number n can exceed 8697543210: it
could have more than 10 digits, the first digit could be 9, the first two digits could be 89, 88, or 87, and so on. When
all these possibilities have been eliminated, it only remains to verify that the established upper bound, 8697543210,
is indeed a number satisfying the conditions (a) and (b).

3. Determine all integers n for which n2 + 15 is the square of an integer.

Remark. Because the problem asks you to “determine all integers n”, you must verify that all the n you find have
the desired property, and moreover prove that these are the only such integers n.

Solution. We may limit the search to nonnegative integers n, since n2 + 15 = (−n)2 + 15. Suppose there is a
nonnegative integer m such that

n2 + 15 = m2

15 = m2 − n2

= (m+ n)(m− n).

Note that the factors m+ n and m− n are not both negative, since their sum 2m is nonnegative, so they are both
positive. Now the only ways to factor 15 into two positive integer factors are 15 · 1 and 5 · 3. Also m + n ≥ m − n
since n ≥ 0. If m+ n = 15 and m− n = 1, then

n =
(m+ n)− (m− n)

2
=

15− 1

2
= 7

and m = 8. If m+ n = 5 and m− n = 3, then

n =
(m+ n)− (m− n)

2
=

5− 3

2
= 1

and m = 4. Both of these solutions indeed work in the original problem. Finally, allowing for negative n, we compute
the answers to be −7, −1, 1, and 7.



4. Let ABC be a triangle. The incircle, centered at I, touches side BC at D. Let E be the reflection of D through I,
and let F be the reflection of D through the midpoint of BC. Prove that A, E, and F are collinear.

Solution. Let the tangent line to the incircle at E (which is of course parallel to BC) meets AB and AC at X and
Y , respectively.

A

B C

I

D

E

F

X Y

Note that

∠IXE =
∠BXE

2
=

180− ∠DBX
2

= 90− ∠DBI = BID.

Therefore the right triangles IXE and BID are similar. We get

XE

EI
=

ID

BD
,

that is, XE ·BD = r2 where r is the inradius. Likewise, EY ·DC = r2. So

XE

EY
=
DC

BD
=
BF

FC
.

Now XE/BF = XY/BC = AX/AB, so 4AXE ∼ 4ABF and A, E, and F are collinear.

Remark. It is also possible to construct elegant solutions involving the excircle Ω tangent to side BC and to the
extensions of rays AB and AC. In fact, Ω is tangent to BC at F (can you prove this?)

5. A strip of width w is the set of all points which lie on, or between, two parallel lines distance w apart. Let S be a
set of n (n ≥ 3) points on the plane such that any three different points of S can be covered by a strip of width 1.
Prove that S can be covered by a strip of width 2.

Solution. Clearly if all n points are collinear we are done, so assume this is not the case. Among all
(
n
3

)
of three

points, consider the triangle ABC with maximal area, and suppose that BC is its longest side. Then the altitude
from A to BC lies inside triangle ABC. Evidently, since ABC can be covered by a strip, we must have h ≤ 1.

Now consider the strip of width 2 centered along line BC. For any point P outside this strip, the height from P
to BC exceeds 1 so that the area of triangle PBC exceeds the area of triangle ABC. Since we chose ABC to have
maximal area, it follows that all points of S are contained inside this strip, as required.

6. Show that the polynomial (x2 + x)2
1000

+ 1 cannot be factored as the product of two nonconstant polynomials with
integer coefficients.

Solution. Assume for contradiction this is not the case, and the polynomial can be written as(
x2 + x

)21000
+ 1 = f(x)g(x)

for some nonconstant f and g with integer coefficients. Clearly we may assume f and g have leading coefficient one.
Taking modulo 2 we obtain that

f(x)g(x) ≡ (x2 + x)2
1000

+ 1 ≡
(
x2 + x+ 1

)21000
(mod 2)



where the last step follows by noticing that (a+ b)2 ≡ a2 + b2 (mod 2).

As x2 + x+ 1 is irreducible modulo 2, it follows that we must have

f(x) =
(
x2 + x+ 1

)α
+ 2f̂(x)

and
g(x) =

(
x2 + x+ 1

)β
+ 2ĝ(x)

for some polynomials f̂ , ĝ with integer coefficients, where α+ β = 1000. By hypothesis, α, β ≥ 1.

Let ε be a root to x2 + x+ 1, namely ε = 1
2

(
−1 + i

√
3
)
. Substituting ε into the original relation, we derive

2 = (−1)2
1000

+ 1 = 4f̂(ε)ĝ(ε)

and hence 1
2 = f̂(ε)ĝ(ε). But we claim this is impossible. Indeed, the right-hand side is a polynomial in ε with

integer coefficients. Repeatedly applying the identity ε2 = −(ε+ 1), we find that the right-hand side must be of the
form a + bε, where a, b are integers. By equating real and imaginary parts this gives a = 1

2 and b = 0, which is a
contradiction.

7. Find all nonnegative integer solutions (a, b, c, d) to the equation

2a3b − 5c7d = 1.

Solution. The answer is (1, 0, 0, 0), (3, 0, 0, 1), (1, 1, 1, 0) and (2, 2, 1, 1). The solution involves several cases.

It’s clear that a ≥ 1, otherwise the left-hand side is even. The remainder of the solution involves several cases.

• First, suppose b = 0.

– If c ≥ 1, then modulo 5 we discover 2a ≡ 1 (mod 5) and hence 4 | a. But then modulo 3 this gives
−5c7d ≡ 0, which is a contradiction.

– Hence assume c = 0. Then this becomes 2a− 7d = 1. This implies 1 + 7d ≡ 2a (mod 16), and hence a ≤ 3.
Exhausting the possible values of a = 0, 1, 2, 3 we discover that (3, 0, 0, 1) and (1, 0, 0, 0) are solutions.

• Henceforth suppose b > 0. Taking modulo 3, we discover that 5c ≡ −1 (mod 3), so c must be odd and in
particular not equal to zero. Then, taking modulo 5 we find that

1 ≡ 2a3b ≡ 2a−b (mod 5).

Thus, a ≡ b (mod 4). Now we again have several cases.

– First, suppose d = 0. Then 2a3b = 5c + 1. Taking modulo 4, we see that a = 1 is necessary, so b ≡ 1
(mod 4). Clearly we have a solution (1, 1, 1, 0) here. If b ≥ 2, however, then taking modulo 9 we obtain
5c ≡ −1 (mod 9), which occurs only if c ≡ 0 (mod 3). But then 53 + 1 = 126 divides 5c + 1 = 2a3b, which
is impossible.

– Now suppose d 6= 0 and a, b are odd. Then 6M2 ≡ 1 (mod 7), where M = 2
a−1
2 3

b−1
2 is an integer. Hence

M2 ≡ −1 (mod 7), but this is not true for any integer M .

– Finally, suppose b, c, d 6= 0, and a = 2x, b = 2y are even integers with x ≡ y (mod 2), and that c is odd.
Let M = 2x3y. We obtain (M − 1)(M + 1) = 5c7d. As gcd(M − 1,M + 1) ≤ 2, this can only occur in two
situations.

∗ In one case, M −1 = 5c and M +1 = 7d. Then 5c+1 ≡ 2x3y. We have already discussed this equation;
it is valid only when x = y = 1 and c = 1, which gives (a, b, c, d) = (2, 2, 1, 1).

∗ In the other case, M + 1 = 5c and M − 1 = 7d. Taking the first relation modulo 3, we obtain that
M ≡ 2c − 1 ≡ 1 (mod 3). Hence y = 0, and x is even. Now 2x + 1 = 5c and 2x − 1 = 7d. But if x is
even then 3 = 22 − 1 | 2x − 1 | 7d, which is impossible. Hence there are no solutions here.

In summary, the only solutions are (1, 0, 0, 0), (3, 0, 0, 1), (1, 1, 1, 0) and (2, 2, 1, 1).


