
Berkeley Math Circle
Monthly Contest 3, Solutions

1. Let ABC be a triangle and suppose AB = 3, BC = 4, CA = 5. What is the distance from
B to line AC?

Solution. First note that since 32 + 42 = 52, we have ∠B = 90◦ by the (converse to the)
Pythagorean theorem. We calculate the area of the triangle in two ways. Viewing AB as the
base and BC as the height, we get that the area is 1

2 · 3 · 4 = 6. But viewing AC as the base
and h (the distance to be determined) as the height, we get an equation:
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2. Suppose a, b, c are positive integers such that

b = a2 − a

c = b2 − b

a = c2 − c.

Prove that a = b = c = 2.

Remark. Note that if you try a value larger than 2 (say a = 3) and use the three equations to compute b, c, and
then a again, the values get successively larger (b = 6, c = 30, a = 870 6= 3). This is the motivation for the following
proof.

Solution. If a = 1, we get b = 0 which is impossible. So it is enough to show that a cannot be greater than 2. If
a > 2, we have

b = a2 − a = a(a− 1) > a(2− 1) = a.

So b > a; in particular b > 2, so applying the same logic to the second equation we get c > b. Lastly, we have
c > 2 so applying the same logic to the third equation we get a > c. We have now proved a > c > b > a which is a
contradiction.

3. Art and Ben play a game while sharing an m×n chocolate bar. They take turns breaking the bar into two rectangular
pieces along one of the lines and eating the smaller piece. (If the two pieces are equal, they can choose which piece
to eat.) Whoever is left with the last 1× 1 square of chocolate loses. If Art moves first, describe all pairs (m,n) for
which Ben has a winning strategy.

Solution. The answer is all pairs (m,n) such that the ratio

R =
m + 1

n + 1

is an integer power of two, that is, the pairs (a− 1, 2ka− 1) and (2ka− 1, a− 1) for a ≥ 2 and k ≥ 0. We will show
that

(a) If R is a power of two, then it will not remain so after one move;

(b) If R is not a power of two, then some move will make it one.

To prove (a), simply note that at each move, one of the dimensions is decreased at most by half, so either m + 1 or
n+ 1 is diminished by a factor strictly between 1 and 2. Thus the new value of R is sandwiched between two powers
of two: R/2 and R in the first case, R and 2R in the second.



As for (b), assume m ≥ n (the other case is symmetric) so 2k < R < 2k+1 for some k ≥ 0. We have

2k(n + 1) < m + 1 < 2k+1(n + 1).

These inequalities imply that one can move to a bar that is [2k(n + 1)− 1]× (n + 1), with R-value 2k.

If R is initially a power of two, Ben wins by making it that way at each move; otherwise Art wins by the same
strategy (in either case ending at the 1× 1 square, where R = 1).

4. Show that there exist infinitely many triples of positive integers x, y, z which satisfy x999 + y1000 = z1001.

Solution. We will choose x, y, and z to be powers of 2 such that the terms x999 and y1000 are equal and z1001 is
their sum. Writing x = 2a, y = 2b, z = 2c, we have the conditions

999a = 1000b = 1001c− 1.

The first equation suggests that we try a = 1000d, b = 999d, which yields the equation

999000d = 1001c− 1.

Since 999000 = 1001 · 998 + 2, we can rewrite this as

2d = 1001(c− 998d)− 1.

It is now clear that we can plug any odd positive integer 2k + 1 for c− 998d and get an integer for d, and hence for
c. The results are as follows:

a = 1000(1001k + 500)

b = 999(1001k + 500)

c = 999000k + 499001.

5. Suppose a, b, c are rational numbers such that

(a2 + 1)3 = b + 1

(b2 + 1)3 = c + 1

(c2 + 1)3 = a + 1.

Prove that a = b = c = 0.

Solution. We have that b = (a2 + 1)3 − 1, c = (b2 + 1)3 − 1, and a = (c2 + 1)3 − 1. By direct substitution we derive
that a satisfies the following polynomial equation of degree 216:((((a2 + 1

)3 − 1
)2

+ 1

)3

− 1

)2

+ 1

3

− (a + 1) = 0.

We observe that the polynomial can be rewritten as

a216 + c215a
215 + · · ·+ c2a

2 − a = 0

for some integers c2, . . . , c215. Hence by the Rational Root Theorem, if a 6= 0 then it follows that a = ±1. So
a ∈ {−1, 0, 1}. Similarly, b, c ∈ {−1, 0, 1} as well.

But if a = ±1, then we have b = (1 + 1)3 − 1 = 7, which is impossible. Hence only a = 0 can occur. Thus
a = b = c = 0.

6. There is a stone at each vertex of a given regular 13-gon, and the color of each stone is black or white. Prove that
we may exchange the position of two stones such that the coloring of all stones is symmetric with respect to some
symmetric axis of the 13-gon.



Solution. First, we may assume there are more white stones than black stones, otherwise we can just reverse the
roles of black and white. Let N denote the total number of black stones. We proceed by casework on the value of
N .

In what follows, for any two stones A and B we define their midpoint to be the stone C for which CA = CB. Note
that for a 13-gon this midpoint is uniquely determined (as 13 is odd).

Note that in what follows, if the given configuration is already symmetric then there is nothing to do.

• The cases N = 0, N = 1, N = 2 are immediate.

• If N = 3, consider two black stones A and B with midpoint C. If C is already black then the configuration is
already symmetric; otherwise, swap C for the third black stone.

• If N = 4, let A and B be two arbitrary black stones. Pick a black stone C which is not a midpoint of A and
B. Then there exists a unique stone D so that AB ‖ CD. If D is black then we are done; else we swap D with
the fourth black stone.

• Suppose N = 5. If there exists an isosceles triangle whose vertices are all black stones, then we can simply
mimic the N = 4 case. So assume there are no isosceles triangles. Then for every

(
5
2

)
= 10 pairs of black stones,

we consider the midpoint of the two stones, which is white by assumption. Since there are a total of 8 white
stones, we find there is a white stone E which is the midpoint of two pairs (A,B) and (C,D) of black stones;
hence AB ‖ CD. Then we can swap E with the fifth black stone.

• Finally, suppose N = 6. For every pair of
(
6
2

)
= 15 black stones we again consider their midpoint. Thus there

is some stone X which is the midpoint of two pairs (A,B), (C,D) of black stones. Hence AB ‖ CD. Let E be
a black stone other than A, B, C, D, or possibly X. Then let F denote the sixth black stone (which may be
X). Then we can move F so that AB ‖ CD ‖ EF and this last case is complete as well.

7. Let ABC be a triangle with incenter I. The incircle of ABC is tangent to sides BC, CA, AB at D, E, F . Let H
denote the orthocenter of triangle BIC, and let P denote the midpoint of the altitude from D to EF . Prove that
HP bisects EF .

Solution. Without loss of generality, AB ≤ AC. Let B1

and C1 be the projections of C and B onto lines BI and
CI, respectively. Then ∠IEC = ∠IB1C = 90◦, so quadri-
lateral IEB1C is cyclic. But then

∠B1EC = ∠B1IC = 180◦ − ∠BIC = 180◦ − ∠FEC

and so we find that B1 lies on line EF . Similarly, C1 lies
on line EF .

Observe that I is the orthocenter of triangle HBC. Then
it is well-known that I is the incenter of triangle DB1C1.
Moreover, H is the intersection of the external angle bisec-
tors of ∠DC1B1 and ∠DB1C1. So it is the center of the
circle Γ tangent to B1C1 and the extensions of rays DB1

and DC1 past B1 and C1.

Let N be the foot of the altitude from I to B1C1, not-
ing that N is in fact the midpoint of EF . Let K be the
tangency point of the Ω to B1C1. Consider the homoth-
ety which takes the incircle of 4DB1C1 to the circle Γ; it
sends N to the point diametrically opposite K on Ω. Call
this point L; we see D, N , L are collinear by the homo-
thety mentioned. Moreover, M , N , K are collinear. As
H is the midpoint of KL and P is the midpoint of DM ,
it follows that the points H, N , P are collinear, which is
what we wanted to prove.
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