
Berkeley Math Circle
Monthly Contest 2, Solutions

1. Six consecutive prime numbers have sum p. Given that p is also prime, determine all possible values of p.

Solution. We consider two cases.

• If 2 is one of the six prime numbers, then the only possible sum is p = 2 + 3 + 5 + 7 + 11 + 13 = 41, which is
indeed a prime.

• If 2 is not one of the six prime numbers, then all six primes are odd, so their sum must be even. Moreover,
p > 2. Therefore p is not prime.

So, the only possible value of p is p = 41.

Remark. In any problem which asks to “determine all”, “find all’, et cetera, the solution always requires two claims:
first, one must show that all claimed values are achievable (here, we needed to show p = 41 actually occurs), and
secondly, to prove that the claimed values are the only ones possible (here, we needed to show no other p could
occur).

2. With two properly chosen weights and a balance scale, it is possible to determine the weight of an unknown object
known to weigh an integer number of pounds from 1 to n. Find the largest possible value of n.

Remark. The balance scale tells whether the weights placed on each side are equal and, if not, which side is heavier.
It may be used an unlimited number of times.

Solution. Let a and b be the known weights. The balance scale allows one to compare the unknown weight with
four known weights: a, b, a + b, and a− b (the last of these is gotten by balancing x + b on one side with a on the
other). After the comparisons are done, there are at most 4 values that x can be known to equal and at most 5 gaps
(3 between and 2 on the ends) for x to lie in. Thus at most 9 values of x can be distinguished.

To show n = 9 is achievable, take the weights to be a = 6 lb and b = 2 lb. Then the nine possibilities can be
distinguished by

1 < b, 2 = b, b < 3 < a− b, 4 = a− b, a− b < 5 < a, 6 = a, a < 7 < a + b, 8 = a + b, 9 > a + b.

3. Let ABC be a triangle. A circle is tangent to segments BC, CA, AB at points D, E, F , respectively. Given that
the measures of ∠CAB, ∠ABC, ∠BCA form an arithmetic progression in some order, prove that the measures of
∠FDE, ∠DEF , ∠EFD also form an arithmetic progression in some order.

Solution. The main observation is that the three angles of a triangle form an arithmetic progression if and only
if one of the angles is 60◦. Indeed, suppose that a triangle has angles x ≤ y ≤ z in arithmetic progression.
Then y = x+y+z

3 = 60◦. Conversely, if a triangle has angles x, 60◦, y, where x ≥ y, we have x + y = 120◦, so
x− 60◦ = 60◦ − y.
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Suppose without loss of generality that ∠CAB = 60◦. We will now prove that ∠FDE = 60◦ as well. Let I be the
center of the inscribed circle. Since ∠IFA = ∠IEA = 90◦ we have that

∠EIF = 360◦ − 2 · 90◦ − ∠BAC = 120◦.

But then

∠EDF =
1

2
∠EIF = 60◦

as desired.



Remark. A second possible approach is to notice that triangles BDF and CDE are isosceles triangles, and use direct
computations to show that ∠FDB + ∠EDC = 120◦.

4. On a distant planet, there are 2014 cities, some pairs of which are connected by two-way roads. It turns out that
the population of each city is the average of the populations of the cities to which it is connected by a single road,
and moreover that it is possible to travel from every city to every other city by a sequence of roads.

Prove that all cities have the same population.

Solution. Consider the city Cmax with the maximal population M (breaking ties arbitrarily). Then M is the average
of the populations of the neighboring cities, say p1, p2, . . . , pn, meaning that

p1 + p2 + · · ·+ pn
n

= M.

But p1, p2, . . . , pn ≤ M , and hence p1 + p2 + · · · + pn ≤ nM . So this can only occur if p1 = p2 = · · · = pn = M .
Hence all neighbors of Cmax have population M .

Proceeding in the same fashion, we find that all neighbors of neighbors of Cmax also must have population M , and
so on. Because the network of cities is connected, this implies that all cities must have population M .

5. Prove that, for positive integers n and m,

gcd(2m − 1, 2n − 1) = 2gcd(m,n) − 1. (1)

Solution. Our main method of attacking the gcd is the following fact:

gcd(m,n) = gcd(m + kn, n)

for positive integers n and k. (Proof: If d|m and d|n, then d|m+ kn; if d|m+ kn and d|n, then d|m. Thus the pairs
on both sides have the same set of common divisors.)

Suppose that (1) does not hold and m+n is as small as possible (here we are using the “well-ordering principle”). Note
that (1) clearly holds when m = n, so we may assume that m > n. Let m−n = r and note that gcd(m,n) = gcd(r, n)
Also,

gcd(2m − 1, 2n − 1) = gcd(2m − 2r + 2r − 1, 2n − 1)

= gcd(2r(2n − 1) + 2r − 1, 2n − 1)

= gcd(2r − 1, 2n − 1).

Therefore we may replace m by r without affecting the claim that (1) is false. But now r+n < m+n, contradicting
the minimality of m + n.

6. Let R≥0 denote the set of nonnegative real numbers. Find all functions f : R≥0 → R≥0 such that, for all x, y ∈ R≥0,

f

(
x + f(x)

2
+ y

)
= 2x− f(x) + f(f(y)) (2)

and
(f(x)− f(y))(x− y) ≥ 0. (3)

Solution. The only solution is f(x) = x. It clearly works. Note that (3) is a disguised way of saying f is increasing
(i.e. x ≤ y implies f(x) ≤ y).

We claim that f(x) ≥ x for all x. If f(x) < x for some x, let y = x−f(x)
2 ≥ 0 in (2). Then

f(x) = 2x− f(x) + f

(
f

(
x− f(x)

2

))
≥ 2x− f(x)

2f(x) ≥ 2x

f(x) ≥ x,



a contradiction. So f(x) ≥ x.

We next find the value of f(0) = c ≥ 0 by plugging various pairs (x, y) into (2). From (c, 0) we get

f

(
c + f(c)

2

)
= 2c− f(c) + f(c) = 2c;

since f(c) ≥ c and f is increasing, we get f(c) ≤ 2c. But from (0, 0) we get

f(c/2) = −c + f(c);

since f(c/2) ≥ f(0) = c, we get f(c) ≥ 2c. So equality holds: f(c) = 2c and f(c/2) = c. Finally, (0, c/2) gives

2c = −c + 2c,

that is, c = 0.

To complete the proof, plug y = 0 into (2) to get

f

(
x + f(x)

2

)
= 2x− f(x),

so

2x = f(x) + f

(
x + f(x)

2

)
≥ x +

x + f(x)

2
≥ x +

x + x

2
= 2x.

Equality holds everywhere, so f(x) = x.

7. Let ABC be a scalene triangle inscribed in circle Γ. The internal bisector of ∠A meets BC and circle Γ at points D
and E. The circle with diameter DE meets Γ at a second point F . Prove that AB

AC = FB
FC .

Solution. Let K be the midpoint of arc B̂C containing A. Let M be the midpoint of BC.
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Since ∠DME = ∠DFE = 90◦, the points D, M , E, F are concyclic. Moreover, since ∠EFK = ∠EFD = 90◦, the
points F , D, K are collinear. Finally, since ∠KAD = ∠KMD = 90◦, the points A, D, M , K are concyclic.

Therefore,
∠FAD = ∠FAE = ∠FKE = ∠DKM = ∠DAM.

This implies that ∠BAF = ∠CAM and ∠CAF = ∠BAM . It follows that

FB

FC
=

sin∠BAF

sin∠CAF
=

sin∠CAM

sin∠BAM
=

AB · BM
sin∠AMB

AC · CM
sin∠AMC

=
AB

AC

as required.

Remark. The line AF is called a symmedian of triangle ABC, and quadrilateral ABFC with FB
FC = AB

AC is called

harmonic. A second fancier approach is to use an inversion at A with radius
√
AB ·AC followed by a reflection

around line AD. It can be shown that this map sends F at M , implying ∠BAF = ∠CAM .


