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By a cake is meant a compact convex set in some Euclidean space. I shall take the
space to be R, so that the cake is simply a compact interval I, which without loss of
generality I shall take to be [0,1]. If you find this thought unappetizing, by all means
think of a three-dimensional cake.

– Woodall[12]

In the 2nd world war, if you’re a collection of Polish mathematicians sitting out the war
in Lvov, your thoughts naturally turn to ... cake. Or more precisely, how to cut a cake.

This is the beginning of what we now call the problem of “fair division”. Fair division
algorithms are examples of what we might now call a mechanism, much like an auction.
These are protocols designed to allocate resources among competing entities so that they
all feel that they’ve received a fair share. This resource could be an entire city1, or the
shared property of a couple during a divorce settlement2. But for now we will follow our
Polish mathematicians and think of a more pleasant resource: cake.

How do you divide a cake between two people so that each of them is convinced
that they’ve received at least half the cake ?

∗Almost all of this lecture is drawn from [8], with a few nods towards Wikipedia. The only original
contribution here is the sequencing of the material, and the cake itself.

†This work is licensed under a Creative Commons Attributions-ShareAlike 3.0 Unported License
1Berlin, during the Potsdam conferences
2Steven Brams, one of the researchers involved in fair division, consulted for divorce lawyers.
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I like what I like, and the “No Crumbs” principle. We will assume that each player has
their own idea of what parts of the cake are valuable. We’ll also assume that the cake can
be cut without generating crumbs3:

Formally, we assume that each player has a finitely additive valuation µi :
[0, 1]→ R. Then the goal of k-player fair division is to partition the interval into k
parts S1, S2, . . . Sk (each of which may be disconnected) so that for all i = 1, . . . k,
µi(Si) ≥ 1

k .

1 Fair Division

I cut, you choose. There is an algorithm to divide cake between two people fairly, and
its origins are lost in the mists of time (2800 years or so back, when people were still eating
cake). The algorithm in its totality is:

I cut, you choose.

Why does this work ? I cut the cake, so according to my viewpoint, the pieces are equal,
and I’m happy with either of them. Now you get to choose your piece, and at least one of
the two must be at least half the cake, so you’re happy as well. Note the subtle asymmetry:
the cutter is guaranteed to get half the cake, and the chooser is guaranteed to get at least
half the cake.

But what if I mess up and don’t cut the pieces evenly ? Then there’s a chance that I get a
smaller piece than I’d like, but that’s only my fault. The chooser doesn’t suffer at all. This
illustrates an important aspect of cake cutting algorithms, which can be described using
the legal term caveat cuttor4. If any player makes a mistake cutting the cake, it only affects
them, and no one else.

This is reminiscient of the notion of a truthful auction[6]. Indeed, in both settings,
the mechanism is designed so that the optimal strategy for any player is to reveal
their true preferences.

Disagreement is good. Steinhaus pointed out that fair division is an unusual setting
where disagreements actually make the division easier, instead of harder. This is not terribly
surprising: after all, if I like cake and you like icing, I can take all the cake and you can take
all the icing, and we’re both convinced we got the entire value of the cake. What’s neat is
that in general, you can prove that the mere existence of a disagreement guarantees a fair

3When demoing this in class, use a cheesecake and a very sharp knife.
4not really.
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division in which each player think they receive strictly more than their fair share of the
cake.

Let’s see how this works for two players. Let’s say that I divided up the cake into two
parts that I believe to be equal. You disagree: you think one part has 60% (which you
take). Now, appealing to your better nature, I suggest that you might donate some of your
“excess” back to me. Let’s say I convince you to give me 5%, leaving you with 55% of the
cake.

Now you can’t just cut a sliver and give it to me - I might not have assigned any value to
it at all. But here’s a trick. You divide your piece into 12 equal parts. Since you believe the
piece is worth 60% of the cake, you believe that each piece is worth 5%, and you’re willing
to give one of them to me. Now I believe that the piece was worth 50% of the cake, so there
is at least one piece that I think is worth 50%/12.

I take that piece, giving me a net share of 1
2 +

1
24 , and you retain 55% of the cake by your

estimate. And lo and behold, we both have more than half the cake5.
The moral of the story, and a recurring theme in cake cutting, is that disagreements over

value make the problem easier, not difficult.

Moving Knifes. The setting with three players gets a little trickier. You could imagine
that the first player cuts up the cake into three equal pieces, but then who chooses next ?
The other two players might both think that a single piece is their best choice, and now we
have a disagreement.

An approach proposed by Dubins and Spanier [2] (who in turn reference Banach and
Knaster[5]) uses a “moving knife”. Imagine a referee that moves a knife from left to right
across the cake. Each player is told to shout “STOP” when they feel that the portion to
the left of the knife is a fair share. When the first player calls “STOP”, they are given that
portion, and the process continues.

Why does this work ? The first player to call a halt is clearly satisfied with the piece they
get. In contrast, the other two players are sure that what’s remaining is at least 2/3 of the
cake, since they would have otherwise called. This can now be divided into two parts, and
by an argument similar to cut-and-choose, they are both satisfied.

Counting Cuts. This method generalizes to any number of players. In fact it’s the first
algorithm we’ve encountered that works for any number of players. So why bother with
any other algorithm ?

If you think about it, running the moving knife algorithm requires players to make
an infinite (indeed, an uncountable) number of decisions, since at each position of the
knife, each player has to decide whether to call “STOP” or not. If we wish to minimize
the number of cuts made in the algorithm, (which essentially boils down to the number of
decisions), we need a way to count cuts, and so the moving knife algorithm (and others

5And all our children are above average...
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like it) aren’t really admissible. They do have great power though, and we’ll return to this
point later.

Trimmings. Here’s a different algorithm due to Banach and Knaster called the “last
diminisher” method that divides a cake fairly among k players with a finite number of cuts.
It works in k rounds, with each round ending when one player gets a piece. Assume the
players are ordered arbitrarily from 1 to k.

Algorithm 1 A single round of trimming

Player 1 cuts a piece of size 1/k.
for i = 2 to k− 1 do

Player i trims the current piece if they think it’s too big. They then pass it on.
end for
Player k can either choose to take the piece or leave it. If they leave it, then it
goes back to the last player who trims it, or Player 1 if there was no trimming.

You should be able to convince yourself that whoever gets the piece is satisfied with it.
Either Player k takes the piece and therefore must be satisfied, or someone who trimmed it
down to size (and is therefore happy with it) gets it. Moreover, each remaining player had
a chance to scrutinize the piece and find it wanting, and so all the remaining players are

convinced that at least a
k− 1

k
fraction of the cake remains.

Successive Pairs. We’ll look at one final algorithm due to Saaty [9] for a fair division
among k players. This algorithm requires less discussion among the players, but ends up
fragmenting the cake much more6. It lends itself to an easy recursive formulation and
proof of correctness.

Algorithm 2 Successive Pairs

Recursively divide the cake among k− 1 players.
Each of the k− 1 players divides their piece into k equal parts.
Player k chooses a part from each of the other k− 1 players.

6This is an occupational hazard in cake cutting. Describing a different algorithm, Stromquist[10, page 641]
says, “A player who hopes only for a modest interval of cake may be presented instead with a countable union
of crumb”.
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The proof of correctness follows inductively by an argument very similar to that used
for cut-and-choose (How?).

2 Envy-free Division

Fair division is all well and good, but envy is the machine that drives the modern capitalist
enterprise7. Suppose it’s no longer good enough that I get a fair share. Suppose I want to
have a larger share than everyone else ? Such a division is called an envy-free division of
the resource.

Formally, if fair division is expressed as µi(Si) ≥ 1/k, envy-free division is
expressed as µi(Si) ≥ µi(Sj)∀i, j.

The cut-and-choose algorithm is envy-free, because the cutter is indifferent to the choice
of pieces, and the chooser is free to choose the best piece. But it’s much harder to design
an envy-free algorithm for three or more players. Consider the moving knife algorithm.
The player who chooses last is clearly envy-free since they’ve held out that long. But what
about the first player ? It’s quite possible that while they got their fair share, they realize
that another player got a larger piece (under their valuation) from what’s left.

The first algorithm for constructing an envy-free division among three people was
discovered independently by Selfridge and Conway[8]. It’s a rather complicated method
that we’ll build up to gradually, and it introduces an interesting graph theoretic viewpoint
on the problem.

Let’s say our three players are Alice, Bob and Carol. We start by asking Alice to divide
the cake into three equal pieces. She is now indifferent to the pieces chosen by the other
two and is therefore envy-free. If Bob and Carol each view different pieces as the best under
their valuation, we are done. If we draw a bipartite graph with the left side representing
players and the right side representing pieces, with an edge between a player and piece if
that player will take that piece without envy, then the above situation looks like Figure 1(a).
What’s really happening is that the graph admits a perfect matching, and so everyone gets
the piece they need.

But suppose Bob and Carol feel that the same piece is the best under their own valuations.
The resulting graph looks like Figure 1(b) and now we have a problem: this graph doesn’t
admit a perfect matching8.

Suppose we could somehow get Bob to value two pieces equally highly. Then we
have a graph that looks like Figure 1(c) and now we have a perfect matching once again.
Algorithmically, Alice divides the pieces, and Carol picks her favorite piece. There’s always
some piece left for Bob to pick without envy, and as noted before, Alice can pick any piece.

7...or something like that...
8Once again, disagreement makes things easier, and agreement makes it harder.
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Figure 1: Underlying graph structure for envy-free cutting

How do we create this scenario ? Simple - we force it. After Alice makes the cuts, we ask
Bob to pick his top two pieces – let’s call these S1, S2 – and then trim the largest piece S1 to
make it equal in size to S2. We call this trimmed piece S′1 and the remaining trimmings T.
If we now consider the pieces S′1, S2, S3, the conditions for a perfect matching apply, and
we can allocate the pieces in an envy-free manner. A minor detail here is that Bob must
pick either S′1 or S2, which can easily be arranged.

But what about T ? We could recurse, but this process could continue forever (remember
that cake is continuous). We need a different approach to dividing T.

We know something about T. It was taken from S1, which Alice believes to be equal to
the piece she got. So if the person who got S′1 gets any part of T, Alice doesn’t care. Let’s say
that Bob got the trimmed piece. Then we have Carol divide T into three equal parts. Bob
picks first, followed by Alice. Bob is envy-free by virtue of picking first. Alice is envy free
because she picks before Carol. Finally, Carol is envy-free because the pieces are equal in
value by her valuation.

The composition of two envy-free divisions is envy-free (why?), and thus we have an
envy-free division. The overall algorithm is summarized below.

Generalizing this to an arbitrary number of players is extremely hard, and was done by
Brams and Taylor in 1995[1].

3 Minimizing the number of cuts

We’d like to minimize the number of cuts used when dividing a cake. After all, in these
algorithms, the cut is a resource, and our business is the minimization of resources ! It’s
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Algorithm 3 Envy-free division among 3 people.

Alice divides the cake into three equal parts S1, S2, S3
Bob picks the largest two pieces (say S1 ≥ S2), and trims S1 = S′1 ∪ T so that S′1
and S2 are equal (T can be empty)
Carol picks the largest among S′1, S2 and S3, followed by Bob (who must pick
S′1 if it’s available) followed by Alice.
Suppose Bob picks S′1. Then Carol divides T into three equal parts (flip the two
players if not). These are picked in order by Bob, Alice, and finally Carol.

important to make sure a “cut” is well-defined – we’ve already seen that with the moving
knife, we’re making an infinite number of decisions that are essentially equivalent to cuts.

We will assume that anyone can divide a cake in the ratio a : b for any a, b according
to their valuation. We will also assume that no one is expected to make cuts based on
someone else’s valuation.

Under these assumptions, it is possible to make precise statements about the number
of cuts needed to divide a cake. First, let’s consider some upper bounds. In the trimming
algorithm, each round ends with one satisfied player after k cuts (or decisions not to
cut). Thus, the total number of cuts is given by T(k) = T(k− 1) + k, and so the overall
number of cuts is T(k) = O(k2). In the successive cuts algorithm, each of the k− 1 players
makes k − 1 cuts before presenting a choice to player k. Thus the recurrence here is
T(k) = T(k− 1) + (k− 1)2, which yields T(k) = O(k3).

The expression O(k2) uses something called “Big-Oh” notation. Informally, it’s a
convenient way to say that something grows at a certain rate, without worrying
about specific details. For example, an expression O(k2) could mean 10k2, or
0.0001k2 or could even mean 5k ! But all we care about is that the expression
grows no faster than k2. Big-Oh notation is a fundamental concept in mathematics
and computer science, and you can read more about it on the web[11].

Can we do better than the trimming algorithm ? It turns out that our old favorite,
divide-and-conquer, comes to our rescue in a very clever way.

Let’s assume we have 2k players. Ask the first 2k − 1 players to make marks on the
cake where they think the halfway point is. Consider the median mark among these,
and ask the 2kth player to choose which side of the median mark they’d prefer. The key
observation here is that no matter which side player 2k picks, there are k− 1 players that
agree with them, and k players who’d prefer the other side. This observation yields a divide-and-
conquer algorithm by recursing on the two sides. The running time of this approach is
T(2k) = 2T(k) + 2k− 1, which yields T(k) = O(k log k).
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Equations like T(k) = T(k− 1) + k and T(2k) = 2T(k) + 2k− 1 are called recur-
rence relations: they define the unknown function T(k) in terms of itself recursively.
One of the things we study in discrete mathematics is how to solve recurrence
relations of this kind. If you’d like to know more, this lecture by Jeff Erickson[4]
is quite excellent.

4 Unequal Shares

Dividing things equally is all well and good. But suppose we need to make an uneven
split. Maybe you came home from classes and found your roommate eating the cake that
you bought the night before. He offers to split it equally, but you’re nobody’s fool. You can
see that he’s eaten about a third of it, and you demand that the remaining cake be split in a
3 : 1 ratio to even things out.

Due to advanced cloning technology, there’s a relatively easy way to solve the problem
for any ratio of integers p : q. You clone yourself p times, and your roommate clones
himself q times. The p + q clones now perform a fair division using any of the methods
described above, and then they collapse back into single individuals with the right amount
of cake.

But this approach is very inefficient. After all, the goal is to find a single cut that divides
the cake into two pieces, and yet we use (say using the most efficient divide-and-conquer
strategy) O((p + q) log(p + q)) cuts.

In fact, this algorithm does not even use a polynomial number of cuts. The
numbers p, q can be expressed using N = log p + log q bits, and yet the algorithm
needs roughly eN cuts !

There’s a much more involved method that uses very elegant combinatorics. But let’s
motivate it with an example. Suppose we have players Alice and Bob who wish to divide
a piece of cake fairly in the ratio 8 : 5. Here’s how the protocol works. We ask Bob to make
a cut where he thinks a fair 8 : 5 division would be, and ask Alice two questions:

Q1: Is the larger piece at least 8/13 of the cake ?

Q2: Is the smaller piece at most 5/13 of the cake ?

Suppose Alice says YES to Q1. Then she can take that piece, Bob takes the other piece,
and they are both satisfied. Similarly, if Alice says YES to Q2, she can give that piece to
Bob, and take the rest. But suppose she says NO to Q1 and NO to Q2 ? She doesn’t want to
take the first piece, and will certainly not want Bob to get the second one.

But Alice agrees that the smaller piece has at least 5/13 of the total. So she takes it ! Now
the remaining cake should be divided in the ratio 3 : 5. This time, Alice makes the cut, and
the process repeats (with the players reversed). Writing out the process, we get
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8 = 5 · 1 + 3
5 = 3 · 1 + 2
3 = 2 · 1 + 1
2 = 1 · 1 + 1

and then we are left with two pieces of the same size.
This algorithm is called the GCD method, and generates the sequence of pieces 5, 3, 2, 1, 1, 1.

It turns out that this sequence is a special case of a class of partitions of 13 called Ramsey
partitions.

Definition 4.1. A partition of p + q is called a Ramsey partition with respect to p, q if for any
subset of the elements in the partition either they sum up to at least p, or their complement sums up
to at least q.

For example, consider the partition 5, 3, 2, 1, 1, 1 of 13 with respect to 8, 5. Let’s pick the
subset (marked in bold) 5, 3, 2, 1, 1, 1. The marked set sums to 7, which is less than 8. But
among the unmarked elements we can pick 3 + 2 = 5. You can verify that this holds no
matter which subset you pick, and so the partition is a Ramsey partition with respect to
8 + 5.

How does this help ? If we now desire to divide a cake in a p : q ratio and have a Ramsey
partition r1, r2, . . . , rk of p + q with respect to p : q, we ask one player to divide the cake
into pieces of size r1, r2, . . . , rk. Then we ask the other player to pick any pieces they feel
have been cut correctly according to their valuation.

There are two possibilities. Either the second player marks as acceptable enough pieces
to obtain her share. If not, the Ramsey partition property implies that among the other
pieces, there are enough pieces for the first player to take their share. The number of cuts
needed is one less than the size of the Ramsey partition, and can be shown to be related to
the number of steps in the GCD computation for p and q.

5 Notes.

This lecture does not cover a number of interesting topics relating to cake cutting algorithms,
such as

• general procedures for envy-free cuttings

• what to do if items are indivisible

• chore allocation (each player wants to receive as little as possible)

• nearly exact procedures (allowing for approximate sharing)

• auction mechanisms for fair division.
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