
Modular Arithmetic Equations and the Euclidean Algorithm
Berkeley Math Circle, April 8, 2014 Ayelet Lindenstrauss

In previous weeks you learned how to add, subtract, and multiply in modular arithmetic.
Now we want to solve simple equations:

1. Can you find an integer x so that 4x ≡ 2 (mod 5)?
Can you find another solution?
How about x = −22? Does it work?
Show that if x is a solution, so are x + 5 and x− 5.
Explain why if x and y are both solutions, then x− y is divisible by 5.

2. Can you find an integer x so that 4x ≡ 2 (mod 6)?
Can you find another solution?
Is it true that if x is a solution, so are x + 6 and x− 6?
Is it true that if x and y are both solutions, then x− y is divisible by 6?

3. Can you solve 4x ≡ 1 (mod 6)?
How about 4x ≡ 3 (mod 6)? 4x ≡ 4 (mod 6)? 4x ≡ 5 (mod 6)? 4x ≡ 0

(mod 6)?
Can you solve 3x ≡ 5 (mod 6)?

Explanation:
For any integers a, x and k, if you look at ax + 6k it will always be divisible by

gcd(a, 6). If we would like it to equal some number b which is not divisible by gcd(a, 6),
this isn’t going to work.

Question:
But what if that isn’t an issue? Will we then have a solution?
When the numbers grow, it becomes harder to guess.

4. Can you solve 17x ≡ 4 (mod 37)? (Here gcd(17, 37) = 1, so that does not stop us.)
A magician drops you a note that says:

HINT: 17 · (−13) + 37 · 6 = 1

Does that help you solve 17x ≡ 1 (mod 37)?
Does that help you solve 17x ≡ 4 (mod 37)?

But how did the magician come up with that good hint?

The answer involves the Euclidean Algorithm, but before we learn it, we can start with a
story. Two merchants are riding their horses to the big market. Each of them has three
sacks on his horse: one big sack with things he wants to sell, and two smaller sacks of coins,
to be able to give change when people buy things. But to simplify carrying the coins, they
have only two kinds: one bag of 10 cent coins and one bag of 25 cent coins.

As they ride, they tell each other of all the things they are selling, and they begin to
want to buy each other’s merchandise. So they want to sell things to each other along the
way. Merchant A wants to buy a pen that Merchant B is selling for 50 cents, so he gives
him two 25 cent coins. But then, he decides he also wants a pencil that Merchant B is
selling for 40 cents. Can they handle it?

What if Merchant A wants a comb that Merchant B is selling for 35 cents?



What if Merchant A wants a brush that Merchant B is selling for 45 cents?
What if Merchant A wants a piece of gum that Merchant B is selling for 5 cents?
Can they buy or sell anything with a price that is a multiple of 5 cents, without

I.O.U.’s?
What if Merchant A wants a piece of candy that Merchant B is selling for 7 cents?

In a foreign country with another currency, we have another pair of merchants in the
same situation, except that there, each merchant has one bag of 3 pennypod coins and one
bag of 7 pennypod coins. Can the foreign Merchant A sell the foreign Merchant B a piece
of candy that costs 1 pennypod? Can he sell him anything that costs a whole number of
pennypods?

What we’re doing: We’re taking two integers x and y (x = 10 and y = 25 in the first
example, or x = 3 and y = 7 in the second). In our examples, they are both positive.
We’re trying to find all the numbers that can be written as ax+ by, with a and b integers.
(The numbers a and b are allowed to be negative because each merchant has his own sacks
of coins, so they can also give change.)

Clearly, if gcd(x, y) = z then z will also divide ax + by for any integers a and b. If
we could manage to write z = ax + by for suitable integers a and b, we could also do it
for any multiples of z, and then we would know we had come up with the maximal list of
numbers that could be written that way.

Thie is where the Euclidean Algorithm comes in. It allows you to find greatest
common divisors and write them as a combination of your original numbers: Take your x
and y. For our purposes, you might as well assume they are non-negative. Let x1 be the
bigger of the two, and x2 the smaller.

Example: Say x = 72 and y = 233. So x1 = 233 and x2 = 72.

Now divide x1 by x2 with remainder, and call that remainder x3. Note that x3 < x2.

In Our Example: 233 = 3 · 72 + 17, so we let x3 = 17.

Now divide x2 by x3 with remainder, and call that remainder x4. Note that x4 < x3.

In Our Example: 72 = 4 · 17 + 4, so we let x4 = 4.

Keep going. This cannot go on forever (why?) so at some point you will, for the first time,
have xn = 0. Then you will have xn−1 = gcd(x1,x2). And why is that? Because if an
integer k divides both x1 and x2, it would have to also divide x3, but then dividing x2

and x3, it would also have to divide x4, and so on, up to xn−1. But on the other hand,
if k divides xn−1, it would also divide xn−2, and dividing both xn−1 and xn−2, it would
have to divide xn−3, and so on, up to x2 and x1.

In Our Example: 17 = 4 · 4 + 1, so we let x5 = 1. Then 4 = 4 · 1 + 0, so we finish when
n = 6 and have 1 = x5 = gcd(233,72).

And Now Work Backwards to Recover the Coefficients:

1 = 17 − 4 · 4 = 17 − 4 · (72 − 4 · 17)

= (−4) · 72 + 17 · 17 = (−4) · 72 + 17(233 − 3 · 72) = 17 · 233 − 55 · 72,

and we are done!


