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Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the
faces are congruent equilateral triangles. On each face of a regular icosahedron is written a
nonnegative integer such that the sum of all 20 integers is 39. Show that there are two faces
that share a vertex and have the same integer written on them.

Let S be the set of all positive integers that are not perfect squares. For n in S, consider
choices of integers a1, as,...,a, such that n < a1 < as < --- < ar, andn-ay-ag---a, is a
perfect square, and let f(n) be the minimum of a, over all such choices. For example, 2-3-6
is a perfect square, while 2-3,2-4,2-5,2-3-4,2-3-5,2-4-5, and 2-3-4-5 are not, and so
f(2) = 6. Show that the function f from S to the integers is one-to-one.

Suppose that the real numbers ag, aq,...,a, and z, with 0 < z < 1, satisfy

ap al Ay,
BT N
1—x+1—x2+ +1—x”+1

Prove that there exists a real number y with 0 < y < 1 such that

ap+ a1y +--- +any" =0.

A finite collection of digits 0 and 1 is written around a circle. An arc of length L > 0 consists
of L consecutive digits around the circle. For each arc w, let Z(w) and N(w) denote the
number of 0’s in w and the number of 1’s in w, respectively. Assume that |Z(w) — Z(w')| <1
for any two arcs w,w’ of the same length. Suppose that some arcs wi,...,w, have the
property that

wm

k
Z (wj) and N = — ZN@U]

] 1
are both integers. Prove that there exists an arc w with Z(w) = Z and N(w) = N.
For m > 3, a list of (') real numbers a;j, (1 <i < j <k <m) is said to be area definite for

R™ if the inequality
> gk Area(AAA;AL) > 0

1<i<j<k<m
holds for every choice of m points Ay,..., A, in R™. For example, the list of four numbers
@123 = @124 = @134 = 1, a034 = —1 is area definite for R%. Prove that if a list of (g‘) numbers

is area definite for R?, then it is area definite for R3.
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[6] Define a function w : Z x Z — Z as follows. For |al,|b| < 2, let w(a,b) be as in the table
shown; otherwise, let w(a,b) = 0.

b
w(a,b)| -2 -1 0 1 2
-2|-1 -2 2
—-1| -2 4 —4 4 -2
a 0 2 -4 12 —4 2
1|-2 4 —4 4 -2
2|-1 -2 2 =2 -1

For every finite subset .S of Z x Z, define

AS) = > w(s—+).

(s,s)eSxS

Prove that if S is any finite nonempty subset of Z x Z, then A(S) > 0. (For example, if S =
{(0,1),(0,2), (2,0), (3, 1)}, then the terms in A(S) are 12,12,12,12,4,4,0,0,0,0,—1, —1, 2, —2, —4, —4.)
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B

For positive integers n, let the numbers ¢(n) be determined by the rules ¢(1) = 1, ¢(2n) = ¢(n),
and ¢(2n + 1) = (—=1)"¢c(n). Find the value of

2013

Z c(n)e(n + 2).

n=1

Let C = Jx-; Cn, where Cy denotes the set of ’cosine polynomials’ of the form

N
flx)=1+ Z ay cos(2mnx)

n=1
for which:
(i) f(x) > 0 for all real x, and (ii) a,, = 0 whenever n is a multiple of 3.
Determine the maximum value of f(0) as f ranges through C, and prove that this maximum
is attained.
Let P be a nonempty collection of subsets of {1,...,n} such that:

(i) if S,8" € P, then SUS" € P and SNS" € P, and (ii) if S € P and S # (), then there is a
subset T' C S such that T' € P and T contains exactly one fewer element than S.

Suppose that f: P — R is a function such that f() = 0 and

FSUS) = f(S)+ f(S") — f(SNS') for all S, S € P.

Must there exist real numbers fi,..., f, such that
F8)=> 1
€S

for every S € P?

For any continuous real-valued function f defined on the interval [0, 1], let
1 1
uD) = [ f@ e Vas(r) = [ (@) = ) do M) = o 170

Show that if f and g are continuous real-valued functions defined on the interval [0, 1], then

Var(fg) < 2Var(f)M(g)* + 2Var(g) M (f)*.
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Let X = {1,2,...,n}, and let k € X. Show that there are exactly k-n"~! functions f : X — X
such that for every z € X there is a j > 0 such that f)(z) < k.

[Here fU) denotes the jth iterate of f, so that f(O)(z) = 2 and fU+1(z) = f (f(j)(x)) ]

@ Let n > 1 be an odd integer. Alice and Bob play the following game, taking alternating turns,
with Alice playing first. The playing area consists of n spaces, arranged in a line. Initially all
spaces are empty. At each turn, a player either

places a stone in an empty space, or removes a stone from a nonempty space s, places a
stone in the nearest empty space to the left of s (if such a space exists), and places a stone
in the nearest empty space to the right of s (if such a space exists).

Furthermore, a move is permitted only if the resulting position has not occurred previously
in the game. A player loses if he or she is unable to move. Assuming that both players play
optimally throughout the game, what moves may Alice make on her first turn?
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