
Berkeley Math Circle
Monthly Contest 4 – Solutions

1. A triangle, two of whose sides are 3 and 4, is inscribed in a circle. Find the minimal possible radius of the circle.

Solution. Since the circle has a chord of length 4, its diameter is at least 4 and so its radius is at least 2. To achieve equality,
choose a right triangle with hypotenuse 4 and one leg 3 (the other leg will, by the Pythagorean theorem, have length

√
7). Then

the midpoint of the hypotenuse is the center of a circle of radius 2 passing through all three vertices.

2. Determine, with proof, whether or not there exist positive integers a, b, and c such that

ab+ bc = ac and abc = 10!.

Remark. 10! denotes the factorial 1 · 2 · 3 · · · 10.

Solution. The answer is no. Note that 10! has exactly one prime factor of 7. Therefore, exactly one of a, b, and c is divisible
by 7. If 7 divides b (we write this as 7|b), then 7|ab + bc but 7 - ac, so the equation cannot hold. Likewise, if 7|a, then 7|ab,
7|ac but 7 - bc, and if 7|c, then 7|bc, 7|ac but 7 - ab. So there are no solutions.

3. A building has the plan of a 5 × 5 grid of rooms, each of which has a door in each of its four walls: thus there are 20 doors
leading to the outside. The doors are to be opened and closed so that every room has exactly 3 open doors leading from it.
Determine the minimum and maximum number of doors to the outside that may be left open.

Solution. If we consider the building as possessing 26 “spaces,” namely the outside and the 25 rooms, then each door belongs
to two spaces; hence the total of the numbers of open doors to each space must be even. Each room has three open doors, an
odd number; hence the number of open doors to the outside must also be odd.

Also, each of the four corner rooms clearly demands an outside door to be opened. So there are at least 4 open outside doors;
coupling this with the parity observation yields at least 5 and at most 19 open outside doors. The diagrams show that both of
these extremes are achievable.

4. Prove that for each n ≥ 1, there is a number N having n digits, each of which is either 1 or 2, such that N is divisible by 2n.

Solution. We proceed by induction. For n = 1, the number N = 2 works. Suppose N works for a given n. Consider the two
(n+ 1)-digit numbers

N1 = 10n +N and N2 = 2 · 10n +N.

formed by attaching a single 1 or 2 to the left-hand side of N . Note that N1 and N2 are both divisible by 2n (since N and
10n are) and their difference, N2 −N1 = 10n = 2n · 5n, is divisible by 2n but not by 2n+1. Therefore, one of N1 and N2 is
divisible by 2n+1, which completes the induction.

Remark. With a bit more analysis, one can prove that the desired number N is unique for each n.

5. Let n ≥ 1 be an integer. How many ways can the rectangle having vertices (0, 0), (n, 0), (n, 1), (0, 1) be dissected into 2n
triangles, all vertices of which have integer coordinates?

Remark. The triangles are considered as positioned on the coordinate plane; in particular, tilings related by rotation and
reflection are considered distinct.

Solution. Since the vertices of the tiles must lie within the rectangle and cannot be collinear, all tiles have the form

(a, 0)(b, 0)(c, 1) or (a, 1)(b, 1)(c, 0) (a < b).
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Such a triangle has area (b− a)/2; for 2n such triangles to tile a rectangle of area n, it is necessary that they all have area 1/2,
i.e. be of the form

(a, 0)(a+ 1, 0)(c, 1) or (a, 1)(a+ 1, 1)(c, 0). (1)

Let Ta,b, for a, b ≥ 0, be the trapezoid (or rectangle, triangle, degenerate segment) having vertices (0, 0), (a, 0), (b, 1), (0, 1),
and let ta,b be the number of ways to tile it with triangles of type (1). If a and b are positive, the right-hand edge can be covered
in only two ways:

• Laying the tile (a− 1, 0)(a, 0)(b, 1) and tiling the resulting Ta−1,b;
• Laying the tile (a, 0)(b− 1, 1)(b, 1) and tiling the resulting Ta,b−1.

Thus in this case ta,b = ta−1,b + ta,b−1. This, together with the initial conditions ta,0 = t0,b = 1, is the recursion of Pascal’s
triangle; it shows that ta,b =

(
a+b
a

)
. Thus the desired answer is tn,n =

(
2n
n

)
.

6. Show that

a+ b+ c+
√
3 ≥ 8abc

(
1

a2 + 1
+

1

b2 + 1
+

1

c2 + 1

)
for all positive real numbers a, b, c satisfying ab+ bc+ ca ≤ 1.
Solution. Note that

8abc

a2 + 1
≤ 8abc

a2 + ab+ bc+ ca
≤ 8abc

4a
√
bc

= 2
√
bc

(the second inequality is by AM-GM). Summing up with the analogous inequalities for b and c, we find that it suffices to prove
that

a+ b+ c+
√
3 ≥ 2(

√
ab+

√
bc+

√
ca).

But this easily follows from two applications of Cauchy-Schwarz:

a+ b+ c =
√
a+ b+ c

√
b+ c+ a ≥

√
ab+

√
bc+

√
ca

√
3 ≥
√
1 + 1 + 1

√
ab+ bc+ ca ≥

√
ab+

√
bc+

√
ca.

7. The incircle of a triangle ABC touches the sides BC, CA, and AB at points D, E, and F , respectively. The circle passing
through point A and tangent to BC at D intersects the line segments BF and CE at points K and L, respectively. The line
through E parallel to DL and the line through F parallel to DK intersect at P . Let R1, R2, R3, R4 denote the respective
circumradii of triangles AFD, AED, FPD, and EPD. Prove that R1R4 = R2R3.

A

B CD

E

F

K

L
P

M N

Solution. Let lines PE and BC intersect at M , and let lines FP and BC intersect at N . Note that ∠DAE = ∠CDL =
∠DME, so AEDM is cyclic and4EMD has circumradius R2. Now by the Extended Law of Sines,

R4

R2
=

PD/(2 sin∠PED)

MD/(2 sin∠MED)
=

PD

MD
.

Likewise, R3/R1 = PD/ND. So it suffices to prove that MD = ND.
By Power of a Point, BK ·BA = BD2 = BF 2. So

BA

BF
=

BF

BK
=

BN

BD
=

BN

BF
,

implying that BN = BA so DN = FA. Likewise DM = EA = FA so we are done.
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