
Berkeley Math Circle
Monthly Contest 3 – Solutions

1. Fifty counters are on a table. Two players alternate taking away 1, 2, 3, 4, or 5 of them. Whoever picks up the last counter is
the loser. Who has a winning strategy, the first player or the second?

Solution. Note that if you make a turn and there is 1 counter left, you have won since the other player must pick up that counter.

If you make a turn and there are 7 counters left, you can win: if your opponent picks up 1, 2, 3, 4, or 5 of them, you can
respectively take 5, 4, 3, 2, or 1 of them to leave 1.

Likewise, if you play and there are 13 counters left, you can in the same way play to leave 7 on your next turn.

Continuing in this way, we see that the first player can win by removing 1 counter, leaving 49, and then playing on the
succeeding turns to leave 43, 37, 31, 25, 19, 13, 7, and 1.

2. How many divisors does 201313 have? (As usual, we count 1 and 201313 itself as divisors, but not negative integers.)

Solution. The prime factorization of 2013 is 3 · 11 · 61, so

201313 = 313 · 1113 · 6113.

A divisor of this number is found by choosing 0 to 13 of the factors 3 (there are 14 possible choices), 0 to 13 of the factors 11
(14 choices), and 0 to 13 of the factors 61 (14 choices). So the total number of divisors is 14 · 14 · 14 = 2744.

3. Define an n-staircase to be the union of all squares of an n × n grid lying on or below
its main diagonal. How many ways are there to divide a 10-staircase into 10 rectangles,
each having a side of length 1? (Reflections are not included.)

Solution. A 10-staircase has 10 “upper right corners” P , each of which must be the upper
right corner of some rectangle, and no two of which can belong to the same rectangle.
It also has a single lower left corner Q which must belong to the same rectangle as one
of the ten points P . Since this rectangle has one side of length 1, it must be a 10 × 1
rectangle placed either vertically or horizontally along the long side of the staircase. The
remainder of the figure is then a 9-staircase to be filled with 9 rectangles.

We can then repeat the argument to find that one of the long sides of the 9-staircase must
be filled by a 9 × 1 rectangle, leaving an 8-staircase. This continues until we reach the
1-staircase, a single square, which can be filled in only one way.

The placement of the 10×1 rectangle is irrelevant because of the symmetry of the shape.
But the 9 × 1 through 2 × 1 rectangles each involve a choice between two alternatives,
so the number of tilings is 28 = 256.
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4. Let x, y, and z be real numbers such that xyz = 1. Prove that

x2 + y2 + z2 ≥ 1

x
+

1

y
+

1

z
.

Solution. Replacing the 1 in the numerators of the fractions on the right by xyz, it suffices to prove that

x2 + y2 + z2 ≥ yz + zx+ xy (1)

which is true because

x2 + y2 + z2 − yz − zx− xy =
(x− y)2 + (y − z)2 + (z − x)2

2
≥ 0.

(Alternatively, (1) is a consequence of Cauchy’s Inequality or of the Rearrangement Inequality.)
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5. Let BCED be a cyclic quadrilateral. Rays CB and ED meet at A. The line through D parallel to BC meets ω at F 6= D,
and segment AF meets ω at T 6= F . Lines ET and BC meet at M . Let K be the midpoint of BC, and let N be the reflection
of A about M . Prove that points D, N , K, E lie on a circle.

Solution. We have ∠MAT = ∠DFT = ∠DET , so 4AMT ∼ 4EMA, giving AM/MT = EM/AM , so AM2 =
ME ·MT . But by Power of a Point, ME ·MT =MB ·MC. So

AM2 =MB ·MC = (AB −AM)(AC −AM) = AB ·AC −AM(AB +AC) +AM2,

that is,
AB ·AC = AM(AB +AC) = AM · 2 ·AK = AN ·AK.

We derive that AD ·AE = AN ·AK, so D, E, K, and N are concyclic.

6. For each n ≥ 1, determine (in closed form) the number of integers k such that

• 0 ≤ k < 4n;

• k is a multiple of 3;

• The sum of the binary digits of k is even.

Solution 1. Let aij = aij(n) denote the number of integers k, 0 ≤ k < 4n, such that
k ≡ i mod 3 and the sum of the binary digits of k is congruent to j mod 2. Thus we
have a decomposition of all 4n of these numbers into six categories:

4n = a00 + a01 + a10 + a11 + a20 + a21.

Since equally many binary numbers in the range 0 ≤ k < 4n have even digit sum as odd,
we have the relation

a00 + a10 + a20 = a01 + a11 + a21 = 22n−1.

Also, we know the number of integers in each of the congruence classes mod 3:

a00 + a01 =
4n + 2

3
, a10 + a11 = a20 + a21 =

4n − 1

3
.
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Lastly, we have the symmetries a10 = a20, a11 = a21 coming from the fact that moving the first binary digit of k to the end
(assuming the representation to be zero-padded so that there are 2n digits) doubles the number, possibly subtracting 4n − 1
which is divisible by 3, while keeping the digit sum fixed. This is not enough information to compute a00, but it does let us
express all the other aij’s in terms of a00:

a01 =
4n + 2

3
− a00

a10 = a20 =
1

2
(22n−1 − a00)

a11 = a21 =
1

2
(22n−1 − a01) =

1

2

(
22n−1 − 4n + 2

3
+ a00

)
=

1

2

(
22n−1 − 2

3
+ a00

)
.

We now seek a recursion expressing a00(n + 1) in terms of a00(n). A number of 2(n + 1) digits (all possibly 0) can be
formed from a number of 2n digits by appending either 00, 01, 10, or 11 to a number of 2n digits. Since these operations
respectively increase the mod-3 remainder by 0, 1, 2, and 0 and the digit sum by 0, 1, 1, 2, we will obtain a number in the
category a00(n+ 1) iff our initial number belonged to the category a00, a21, a11, a00. We can now build the recursion:

a00(n+ 1) = a00(n) + a21(n) + a11(n) + a00(n)

= 2a00(n) + 2a11(n)

= 2a00(n) +
22n−1 − 2

3
+ a00(n)

= 3a00(n) +
22n−1 − 2

3
,
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which we write as
a00(n+ 1)− 3a00(n) =

1

6
· 4n − 2

3
. (2)

We now observe that the function bn = 4n satisfies bn+1 − 3bn = 4n, so multiplying by 1/6 achieves the first term on the
right-hand side of (2); while the function cn = 1 satisfies cn+1 − 3cn = −2, so multiplying by 1/3 achieves the second term
on the right-hand side of (2). Thus the function

an =
1

6
· 4n + 1/3 =

22n−1 + 1

3

satisfies (2), but it is not the desired a00(n) due to initial conditions: a1 = 1 while a00(1) = 2 (the relevant numbers being 00
and 11). So we employ the function dn = 3n, which satisfies dn+1− 3dn = 0 and d1 = 3, which must therefore be divided by
3 to yield the required function:

a00 =
22n−1 + 1

3
+ 3n−1.

Solution 2. Let d2n−1, d2n−2, . . . , d1, d0 be the binary digits of k from left to right (here we zero-pad so that k has 2n digits).
The second and third conditions are respectively equivalent to

0 ≡
∑
i

2idi ≡
∑
i

(−1)idi mod 3 and 0 ≡
∑
i

di ≡
∑
i

(−1)idi mod 2.

So the conditions can together be written as
0 ≡

∑
i

(−1)idi mod 6. (3)

Let ei = di when i is even, and let ei = 1 − di when i is odd. Then the ei’s, like the di’s, range over all 2n-tuples of 0’s and
1’s. Then (3) can be written as ∑

i

ei ≡ n mod 6. (4)

The number of solutions to (4) is of course

an =
∑

k≡n mod 6

(
n

k

)
.

This is a sum of binomial coefficients multiplied by coefficients which are periodic mod 6; we evaluate it by applying the
Binomial Theorem to sixth roots of unity. Let ε = eπ

√
−1/3 = (1 +

√
−3)/2 be one such, and note that

5∑
r=0

εrk =

{
6 if 6 | k
0 if 6 - k

so

an =
∑

k≡n mod 6

(
n

k

)

=
1

6

2n∑
k=0

5∑
r=0

εr(k−n)
(
n

k

)

=
1

6

5∑
r=0

(
ε−rn

2n∑
k=0

εrk
(
n

k

))

=
1

6

5∑
r=0

(
ε−rn(1 + εr)2n

)
(Binomial Theorem!)

=
1

6

5∑
r=0

(
(1 + εr)2

εr

)n
.
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We use the simplification
(1 + εr)2

εr
= (1 + εr)(1 + ε−r) = (1 + εr)(1 + εr) = |1 + εr|2

to evaluate each of the six terms:

an =
1

6

5∑
r=0

|1 + εr|2n

=
1

6
(|1 + 1|2n + |1 + ε|2n + |1 + ε2|2n + |1− 1|2n + |1− ε|2n + |1− ε2|2n)

=
1

6
(4n + 3n + 1n + 0n + 1n + 3n)

=
1

6
(4n + 2 · 3n + 2),

which agrees with the previous answer.

7. Let x and y be real numbers, and define a sequence a0, a1, a2, . . . by

an =

n∑
k=0

xkyn−k.

Suppose that am, am+1, am+2, am+3 are integers for some m ≥ 0. Prove that an is an integer for all n ≥ 0.
Solution. By cancellation of terms we see that

an+1 − xan = yn+1 and an+1 − yan = xn+1. (5)

In particular, an+2 − xan+1 = yn+2 = y · yn+1 = y(an+1 − xan), which we can write as

an+2 = (x+ y)an+1 − xyan. (6)

We let s = x + y and t = xy. Then the four given integral values of an yield a pair of linear equations in s and t (or, to be
precise, s and −t):

am+2 = sam+1 − tam
am+3 = sam+2 − tam+1

(7)

If the determinant a2m+1 − am+2am is nonzero, these equations have a unique solution. In fact,

a2m+1 − am+2am = am+1(am+1 − xam)− am(am+2 − xam+1)

= am+1y
m+1 − amym+2 = ym+1(am+1 − yam) = xm+1ym+1 = tm+1.

So we distinguish two cases.
Case 1. t = 0. Then without loss of generality y = 0, so an = xn. The conclusion follows from the following lemma:

Lemma 1. If x is a real number and n a nonnegative integer such that xn and xn+1 are integers, then x is an integer.

Proof. Note that x = xn+1/xn is rational (if x = 0, the conclusion is immediate). Write x = p/q in lowest terms with q > 0;
then xn = pn/qn is also in lowest terms, hence q = 1.

Case 2. t 6= 0. Then tm+1 is an integer, and likewise tm+2 = a2m+2 − am+3am+1 is an integer. So by Lemma 1 again, t is an
integer. Now s is rational by Cramer’s rule applied to (7). If we can prove s is an integer, then since a0 = 1 and a1 = s, we
will be done by (6).

Write s = u/v in lowest terms and assume that v > 1. Every an is rational; write an = un/vn in lowest terms. We claim that
vn = vn for every n ≥ 0. The cases n = 0 and n = 1 are clear. We now induct, using (6):

un+2

vn+2
=
u

v
· un+1

vn+1
− t · un

vn
=
uun+1 − tv2un

vn+2
.

Since u and un+1 are coprime to v, the last fraction is reduced. So vn+2 = vn+2 as desired. Hence an /∈ Z for n ≥ 1, which
is a contradiction.
Remark. Many of the statements in the above proof can be proved more simply using the formula an = xn+1−yn+1

x−y for x 6= y.
The arguments above have been selected to avoid separately considering the case x = y.
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